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Abstract

We construct the world-sheet interface which preserves space-time supersymmetry

in type II superstring theories in the Green-Schwarz formalism. This is an analog of the

conformal interface in two-dimensional conformal field theory. We show that a class of

the supersymmetric interfaces generates T-dualities of type II theories, and that these

interfaces have a geometrical interpretation in the doubled target space. We compute

the partition function with a pair of the supersymmetric interfaces inserted, from which

we read off the spectrum of the modes coupled to the interfaces and the Casimir energy

between them. We also derive the transformation rules under which a set of D-branes

is transformed to another by the interface.
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1 Introduction

Since its discovery, the D-brane has been a central subject in the study of superstring

theory. On one hand, it preserves space-time supersymmetry and, on the other, it

preserves world-sheet conformal invariance. As is generally the case for those which

preserve fundamental symmetries, the D-brane plays an important and fundamental

role in the theory. From the world-sheet point of view, a natural generalization of the

D-brane or the conformal boundary/boundary state is the conformal interface [1–3]. It

is a one-dimensional domain wall/defect in the world-sheet which preserves the confor-

mal invariance and glues two generally different conformal field theories (CFTs). As

anticipated, the conformal interface has interesting properties: it generates symmetries

of CFT including T-dualities [4], and transforms a set of D-branes to another [5,6]. For

the aspects of the conformal interface, we refer to [7–18] and references therein.

One can thus expect that, once embedded in superstring theory, the interface would

provide an important element in order to explore non-perturbative aspects and sym-

metries of superstring theory. The purpose of this paper is to take a step toward this

direction. In particular, we will study the world-sheet interface in type II superstring

theories in flat space-time in the Green-Schwarz (GS) formalism. The reason to work

in the GS formalism is two-fold. First, space-time supersymmetry is manifest and one

can avoid complications due to ghosts, as usual. Second, a difficulty has been pointed

out [3] for the conformal interface in the world-sheet of strings: the interface generally

may not preserve enough Virasoro symmetries to remove negative norm states, except

in the special cases where two sets of the Virasoro symmetries are preserved. In the GS

formalism, the physical space is manifestly unitary, and hence this formalism should

provide a safe framework in which one can study the object whose properties are yet

to be investigated. As the genus of the world-sheet increases, the interface can be

wrapped on non-equivalent one-cycles. In order for the interface to make full sense in

string theory, it is necessary to clarify how to perform the summation over the genus

for correlation functions involving interfaces.1 This is an important issue for future,

and we focus on fixed genus in this paper.

In the GS formulation, the conformal boundary state describing the D-brane in

the covariant formulation is represented as the boundary state preserving space-time

supersymmetry [19]. Similarly, the conformal interface would be represented in the GS

formulation as the interface preserving the space-time supersymmetry. In this paper, we

indeed construct the world-sheet interface with this property. Since the world-sheet the-

ory in the GS formulation is not a conformal field theory due to the gauge fixing, we call

the above boundary states/interfaces the supersymmetric boundary states/interfaces.

1The author would like to thank the referee for pointing out this.
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We find two classes of the supersymmetric interfaces, which are regarded as gener-

alizations of the c = 1 permeable conformal interfaces [3]. One describes factorized

D-branes/boundary states, whereas the other is an analog of the topological conformal

interface [2]. We show that the latter class generates T-dualities of type II theories. In

both cases, two sets of the Virasoro generators in the physical space are preserved, and

the difficulty mentioned above may be evaded. We also study properties of the super-

symmetric interface. First, in parallel with the topological conformal interface [10], we

see that the corresponding supersymmetric interface has a geometrical interpretation

in the doubled target space. Second, we compute the coupling of the massless fields

through the interface, and confirm the Buscher rules at the linearized level in the case of

the analog of the topological interface. Third, we compute the partition function with

a pair of an interface and its conjugate inserted, from which we read off the spectrum of

the modes coupled to the interfaces and the Casimir energy between them. Finally, we

derive the transformations of the D-branes by the interface. Our results confirm that

the conformal interface is embedded into superstring theory at least for fixed genus,

though somewhat in disguise in our formulation.

The rest of this paper is organized as follows. In section 2, we summarize the

supersymmetric boundary state for type II superstrings in the GS formalism, together

with the unfolding procedure of boundary states to interfaces. In section 3, we construct

the supersymmetric interfaces. In section 4, we study the target-space geometry and

the coupling of the massless fields. In section 5, we compute the partition function with

the interfaces inserted. In section 6, we derive the transformations of the D-branes.

We conclude with a summary and discussion in section 7.

2 Supersymmetric boundary states

The conformal interface in two-dimensional conformal field theory is obtained from the

conformal boundary state by the unfolding procedure [1,3]. In type II superstring the-

ories in the Green-Schwarz formalism in light-cone gauge, the conformal symmetry is

fixed, and the guiding principle to construct the boundary state, the conformal invari-

ance, is replaced by the invariance under the space-time supersymmetry. Accordingly,

the conformal boundary state, corresponding to the D-brane, is realized as the super-

symmetric boundary state preserving space-time supersymmetry. It is then expected

that the supersymmetric interface in the GS formalism is obtained by unfolding the su-

persymmetric boundary state. This is the strategy which we take in the following. We

thus start our discussion with a summary on the supersymmetric boundary state [19]

and the unfolding procedure.

2



2.1 Supersymmetric boundary states in type IIB theory

To be concrete, we first concentrate on type IIB theory in flat space-time. In the GS

formalism in light-cone gauge, one of the light-cone string coordinates is parametrized

as X+ = x+ + p+τ . The physical degrees of freedom are given by eight transverse

coordinates, XI(τ, σ) (I = 1, ..., 8), and two right- and left-moving SO(8) Majorana-

Weyl spinors with the same chirality, Sa(τ − σ) and S̃a(τ + σ) (a = 1, ..., 8). The other

light-cone coordinate X− is determined through the constraints,

p+∂±X− = ∂±XI∂±XI +
i

2
Sa∂−Sa +

i

2
S̃a∂+S̃a . (2.1)

The half of the space-time supersymmetry is realized linearly by the spinor zero modes,

Qa :=
√

2p+Sa
0 , Q̃a :=

√
2p+S̃a

0 , (2.2)

whereas the other half is realized non-linearly by

Qȧ :=
1√
p+

σI
aȧ

∞∑
n=−∞

Sa
−nα

I
n , Q̃ȧ :=

1√
p+

σI
aȧ

∞∑
n=−∞

S̃a
−nα̃I

n . (2.3)

The modes of the fields satisfy the relations,

[αI
m, αJ

n] = mδm+n,0δ
IJ , {Sa

m, Sb
n} = δm+n,0δ

ab , (2.4)

and similar ones for α̃I
n, S̃a

n. The matrices σI
aȧ together with σ̄I

ȧa(= σI
aȧ) form eight-

dimensional gamma matrices

γI =

(
0 σI

σ̄I 0

)
satisfying {γI , γJ} = 2δIJ . (2.5)

The anti-commutation relations among the supercharges are, e.g.,

{Qa, Qb} = 2p+δab , {Qa, Qȧ} =
√

2αI
0σ

I
aȧ , {Qȧ, Qḃ} = P−δȧḃ , (2.6)

where

P− =
2

p+

(1

2
αI

0α
I
0 + Nb + Nf

)
, (2.7)

and

Nb =
∞∑

n=1

αI
−nαI

n , Nf =
∞∑

n=1

nSa
−nSa

n . (2.8)

The supersymmetric boundary state |B〉 is defined to preserve half the supercharges,

(Qa + iMabQ̃
b)|B〉 = (Qȧ + iMȧḃQ̃

ḃ)|B〉 = 0 . (2.9)
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One finds that these conditions are satisfied by

|B〉 = CB

∞∏
n=1

exp

[
1

n
MIJαI

−nα̃J
−n − iMabS

a
−nS̃b

−n

]
|B〉0 . (2.10)

Here, CB is the normalization constant. The zero-mode part |B〉0 = |B〉b0|B〉f0 is

annihilated by all the positive modes and given by

|B〉b0 =
∑

|kI , kKMKJ〉 ,

|B〉f0 = MIJ |I〉R|J〉L − iMȧḃ|ȧ〉R|ḃ〉L . (2.11)

The summation symbol stands for the summation/integral over possible zero modes

with appropriate weight. The bosonic zero modes act on the oscillator vacuum as

αK
0 |kI , k̃J〉 = (kK/2)|kI , k̃J〉, α̃K

0 |kI , k̃J〉 = (k̃K/2)|kI , k̃J〉, whereas the spinor zero

modes as

Sa
0 |ȧ〉R =

1√
2
σ̄I

ȧa|I〉R , Sa
0 |I〉R =

1√
2
σI

aȧ|ȧ〉R , (2.12)

for the right movers and similarly for the left movers. The matrices (MIJ ,Mab,Mȧḃ)

are taken to be orthogonal ones,

MKL = exp
[
ΩIJΣIJ

]
KL

, Mαβ = exp
[1
2
ΩIJγIJ

]
αβ

=

(
Mab 0

0 Mȧḃ

)
, (2.13)

where (ΣIJ)KL = δI
KδJ

L−δJ
KδI

L, γIJ = (γIγJ −γJγI)/2 and ΩIJ = −ΩJI are parameters.

These SO(8) matrices are related by

γKMKI = MγIMT , (2.14)

which reads in terms of the 8 × 8 matrices σK
aȧMKI = Mabσ

I
bḃ
Mȧḃ . On the boundary

state, the modes of the fields satisfy the boundary conditions,

(αI
n − MIJ α̃J

−n)|B〉 = (Sa
n + iMabS̃

b
−n)|B〉 = 0 . (2.15)

These are translated into the conditions on the fields at τ = 0 by using the mode

expansions ∂−XAI =
∑

αAI
n e−2in(τ−σ), SAa =

∑
SAa

n e−2in(τ−σ) and similar ones for the

left movers. Successively acting on the boundary state with the combinations of the

supercharges and modes in (2.9) and (2.15) yields consistency conditions. One can

check that these are satisfied by the orthogonality of the matrices, the relation (2.14)

and the constraint P− = P̃− which follows from (2.1).

A simple example of the supersymmetric boundary state is given by setting MIJ

and Mαβ to be

M
(p)
IJ =

( −1p+1 0

0 17−p

)
, M

(p)
αβ = γ1 · · · γp+1 , (2.16)
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where 1n is the n × n unit matrix. This corresponds to the Neumann conditions (in

the open string channel) for I = 1, ..., p + 1 and the Dirichlet conditions for I =

p + 2, ..., 8. Furthermore, in light-cone gauge, it follows that ∂σX
± = 0 from the gauge

fixing condition and the constraints (2.1) . This means that one also has the Dirichlet

conditions in the light-cone directions. The boundary state thus represents the (p+1)-

instanton, which is related to the usual Dp-brane by a double Wick rotation. Keeping

this relation in mind, we use the terminology “D-brane” also for the boundary state

in this paper. One can check that the coupling of the massless closed string modes

to the boundary state agrees with that to the (Wick rotated) black p-brane. General

supersymmetric boundary states are obtained by SO(8) transformations of M
(p)
IJ and

M
(p)
αβ . In particular, the sign of Mαβ is flipped by a 2π-rotation in all directions, which

transforms a BPS state to an anti-BPS state. Note also that the forms of the matrices

in (2.16) are compatible with (2.13) only when p is odd.

2.2 Supersymmetric boundary states in type IIA theory

One can similarly construct the supersymmetric boundary state in type IIA theory by

flipping the chirality for the left movers, e.g., S̃a → S̃ ȧ and |ȧ〉L → |a〉L. In this case,

the boundary conditions for the supercharges become

(Qa + iMaḃQ̃
ḃ)|B〉 = (Qȧ + iMȧbQ̃

b)|B〉 = 0 , (2.17)

where Q̃ȧ =
√

2p+S̃ ȧ are the supercharges for the linearly realized supersymmetry

and Q̃a, which are defined similarly to (2.3), are those for the non-linearly realized

supersymmetry. The SO(8) matrices in (2.13) are multiplied by matrices generating

reflections. The resultant matrices satisfy the relation (2.14) as before. For instance,

for the usual Dp-brane with even p, one has M
(p)
IJ in (2.16) with even p and

M
(p)
αβ = γ9γ1 · · · γp+1 =

(
0 Maḃ

Mȧb 0

)
. (2.18)

The boundary state in type IIA theory then takes the form which is obtained from

(2.10) and (2.11) by replacing S̃a
n, (Mab,Mȧḃ) and |ḃ〉L with S̃ ȧ

n, (Maḃ, Mȧb) and |b〉L,

respectively.

2.3 Unfolding procedure

In two-dimensional CFT, a way to construct conformal interfaces is to unfold conformal

boundary states. Suppose that one has a boundary state |B〉CFT =
∑

i,j cij|Bi〉1 ⊗|Bj〉2
in a tensor product theory CFT1⊗CFT2, which satisfies

0 = (L1
n + L2

n − L̃1
−n − L̃2

−n)|B〉CFT . (2.19)
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Figure 1: Unfolding procedure. A boundary state in a tensor product theory is unfolded
to an interface gluing theory 1 and 2.

Here, cij are coefficients and LA
n , L̃A

n (A = 1, 2) are the Virasoro generators for the right

and left movers in CFTA, respectively. Then, one can obtain a conformal interface

gluing CFT1 and CFT2 by unfolding the boundary state as

I =
∑
i,j

cij|Bi〉1 · 2〈Bj| , (2.20)

where 2〈Bj| is obtained from |Bj〉2 by the hermitian conjugation followed by the sign

flip of the world-sheet coordinate τ → −τ . (See Figure 1.) The resultant interface

indeed preserves the conformal invariance,

(L1
n − L̃1

−n)I = I(L2
n − L̃2

−n) , (2.21)

which also means the conservation of energy across the world-sheet interface/defect I.

In this construction, the interface is located at τ = 0 in the world-sheet.

3 Supersymmetric interfaces

As we observed in the previous section, the supersymmetric boundary state represents

the D-brane and is regarded as an analog of the conformal boundary state. In this

section, we construct the supersymmetric interface by unfolding the supersymmetric

boundary state, similarly to the conformal interface.

3.1 Case of type IIB theory

To be specific, in this subsection we consider the world-sheet interface which glues two

type IIB theories residing on the left and the right side of the interface, respectively

6



(IIB-IIB case). The interface is defined to satisfy the conditions on the supercharges,

(Qa
1 + iR1

abQ̃
b
1)I = I(Qa

2 + iR2
abQ̃

b
2) , (3.1)

(Qȧ
1 + iR1

ȧḃ
Q̃ḃ

1)I = I(Qȧ
2 + iR2

ȧḃ
Q̃ḃ

2) , (3.2)

for some RA
ab, R

A
ȧḃ

(A = 1, 2). According to the unfolding procedure, we first double the

fields, and denote the resultant modes by

(αAI
n , α̃AI

n ) , (SAa
n , S̃Aa

n ) . (3.3)

We remark that we have doubled the fields just as an intermediate step for the con-

struction. Then, one may consider a boundary state in which the bilinear forms of the

oscillators are given by SIJ
ABαAI

−nα̃BJ
−n and Sab

ABSAa
−nS̃

Bb
−n, where SAB’s are the “S-matrix”

which determines the boundary conditions of the modes. Next, by unfolding the sector

with A = 2, one finds that the oscillators are transformed as (α2I
n , α̃2I

n ) → (−α̃2I
−n,−α2I

−n)

and (S2a
n , S̃2a

n ) → (S̃2a
−n, S

2a
−n). This results in an interface of the form

I = CI Ib · If ,

Ib =
∞∏

n=1

exp

[
1

n
βAI
−n · SIJ

AB · β̃BJ
−n

]
· Ib0 , (3.4)

If =
∞∏

n=1

exp

[
−iTAa

−n ∗ Sab
AB ∗ T̃Bb

−n

]
· If0 .

Here, the oscillators are defined by

βAI
n := (α1I

n ,−α̃2I
−n) , β̃AI

n := (α̃1I
n ,−α2I

−n) ,

TAa
n := (S1a

n ,−S̃2a
−n) , T̃Aa

n := (S̃1a
n ,−S2a

−n) , (3.5)

and the product ∗ by

UA ∗ VA := ηABUAVB , (3.6)

with ηAB = diag(+1,−1). (We do not raise or lower the indices A,B by ηAB.) CI is

the normalization constant. It is also understood that the annihilation operators, or

the oscillators with A = 2, act on the interface implicitly from the right, e.g.,

exp
[
α1I
−nα2J

n

]
· I =

∑
l

1

l!
(α1I

−n)l · I · (α2J
n )l . (3.7)

Starting from our ansatz of the form of the interface (3.4), we would like to determine

SIJ
AB, Sab

AB and the zero-mode factors Ib0, If0, as well as RA
ab, RA

ȧḃ
in (3.1), (3.2).

For this purpose, we first note that the oscillators satisfy the continuity conditions

on the interface, βAI
n ≈ SIJ

ABβ̃BJ
−n , β̃AI

n ≈ βBJ
−nSJI

BA and TAa
n ≈ −iSab

AB∗T̃Bb
−n, T̃Aa

n ≈ +iTBb
−n∗

7



Sba
BA for n ≥ 1. The symbol ≈ denotes the relations which hold on the interface. For

example, β1I
n ≈ SIJ

1Bβ̃BJ
−n stands for (α1I

n − SIJ
11 α̃1J

−n)I = I(−SIJ
12 α2J

n ). Next, we require

that all the modes with n ∈ Z have the same transformations so that the continuity

conditions give linear transformations of the fields. This leads to the condition that

SIJ
AB is orthogonal and Sab

AB is pseudo-orthogonal,

SIJ
ABSIK

AC = δJKδBC , Sab
AB ∗ Sac

AC = δbcηBC . (3.8)

The continuity conditions on the oscillators are then summarized as

βAI
n ≈ SIJ

ABβ̃BJ
−n , TAa

n ≈ −iSab
AB ∗ T̃Bb

−n , (3.9)

for n 6= 0. Furthermore, in order for (αAI
0 , α̃AI

0 ) to have the same transformations as

the non-zero modes, the bosonic zero-mode factor Ib0 should be of the form,

Ib0 =
∑

|k1I , kBI′SI′J
B1 〉1 · 2〈−k2K ,−kBI′SI′L

B2 | . (3.10)

On the dual vacuum (αI
0, α̃

I
0) act as 〈k̃K , kL|αI

0 = 〈k̃K , kL|(kI/2) and 〈k̃K , kL|α̃I
0 =

〈k̃K , kL|(k̃I/2).

Now, let us impose the conditions on the supercharges (3.1), (3.2). Since the linearly

realized supercharges Qa
A are nothing but the spinor zero-modes, only the spinor zero-

mode factor If0 is relevant for the conditions on Qa
A. Its general form is given by

If0 = Mijkl|i〉1R|j〉1L · 2L〈k|2R〈l| , (3.11)

where i = (I, ȧ), j = (J, ḃ), k = (K, ċ), l = (L, ḋ). Assuming that If0 is bosonic, the

coefficients Mijkl are non-vanishing only when an even number of the indices takes the

vector/spinor indices. Given the form (3.11) and the action of the spinor zero modes

(2.12), the conditions (3.1) are translated into those for Mijkl and RA
ab. We list them

in the appendix.

One can find two simple classes of the solutions. In both classes, one has

RA
ab = ηAMA

ab , ηA = ±1 . (3.12)

The non-vanishing coefficients Mijkl in one class are given by

MFD
ijkl = N1

ijN
2
kl , (3.13)

N1
IJ = M1

IJ , N1
ȧḃ

= −iη1M
1
ȧḃ

, N2
KL = M2

LK , N2
ċḋ

= −iη2M
2
ḋċ

,

and in the other by

MTP
ijkl = N id

il N rot
jk , (3.14)

N id
IL = δIL , N id

ȧḋ
= δȧḋ , N rot

JK = M1
IJM2

IK , N rot
ḃċ

= η1η2M
1
ȧḃ

M2
ȧċ ,

8



where (MA
IJ ,MA

ab,M
A
ȧḃ

) are sets of SO(8) matrices satisfying (2.14). We have also ab-

sorbed overall constants into the normalization constant CI . Since ηA can be absorbed

by 2π-rotations in each sector with A = 1 or A = 2, we set ηA = +1 in the following.

Let us next discuss the conditions for the non-linearly realized supercharges Qȧ
A. A

way to obtain a sufficient condition for (3.2) to hold is as follows. First, decompose the

summation
∑

n∈Z as
∑

n≥1 +
∑

n>1 by flipping the sign of n for n < 0. Next, applying

(3.9) for n ≥ 0, one obtains an expression in terms of (βAI
−n, β̃AI

−n) and (TAa
−n , T̃Aa

−n) with

n ≥ 0. Requiring each term, e.g., of the form S1a
−nα̃1J

−n, to vanish gives a set of equations

for SIJ
AB,Sab

AB and RA
ȧḃ

. We list them in the appendix. One then finds that those

equations are solved by

RA
ȧḃ

= εAMA
ȧḃ

, εA = ±1 , (3.15)

SIJ
AB =

(
a11M

1
IJ a12δIJ

a21M
1
KJM2

KI a22M
2
JI

)
, Sab

AB =

(
ε1a11M

1
ab −ia12δab

iε1ε2a21M
1
cbM

2
ca ε2a22M

2
ba

)
,

where aAB is an orthogonal matrix to maintain the (pseudo-)orthogonality of SIJ
AB

(Sab
AB), and (MA

IJ ,MA
ab,M

A
ȧḃ

) are sets of SO(8) matrices satisfying (2.14).

We still have to check some consistency conditions. First, both (3.9) with n = 0

and (3.1) give the continuity conditions on (SAa
0 , S̃Aa

0 ), which should be compatible.

Indeed, if (Qa
1 + iM1

abQ̃
b
1) − (Qa

2 + iM2
abQ̃

b
2) is evaluated by using (3.9) and (3.15), one

finds that it vanishes on the interface only when ε1a11 = 1+ ε1ε2a21 and ε2a22 = 1+a12.

This means that aAB should be either of

aFD
AB =

(
ε1 0

0 ε2

)
, aTP

AB =

(
0 −1

−ε1ε2 0

)
. (3.16)

One can confirm that the former gives the same conditions on (SAa
0 , S̃Aa

0 ) as those

from MFD
ijkl and the latter as from MTP

ijkl, under the identification of the SO(8) ma-

trices in (3.13), (3.14) and those in (3.15). Second, one has further conditions by

successively acting on the interface with the combinations of the supercharges and the

modes in (3.1), (3.2) and (3.9). These are checked by using (3.15) and the constraint

(2.1). Since the signs εA can be absorbed by the redefinitions (εAMA
IJ ,MA

ab, εAMA
ȧḃ

) →
(MA

IJ ,MA
ab,M

A
ȧḃ

) and ε1ε2CI → CI , we set εA = +1 in the following.

In summary, to construct the interfaces satisfying the supersymmetric conditions

(3.1) and (3.2), we started with the ansatz (3.4), which follows from the supersymmetric

boundary state and the unfolding procedure. We further required the interfaces to

induce linear transformations of the fields, which in particular leads to the condition

that both zero and non-zero modes transform homogeneously. We then found the two

classes of the supersymmetric interfaces, which we labeled by FD and TP, respectively.
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Factorized D-branes

In one class, the interface takes the form

IFD = CFD

∞∏
n=1

e
1
n

M1
IJα1I

−nα̃1J
−n−iM1

abS
1a
−nS̃1b

−n · IFD
b0 IFD

f0 ·
∞∏

n=1

e
1
n

M2
IJα2I

n α̃2J
n +iM2

abS
2a
n S̃2b

n ,

IFD
b0 =

∑
|k1I , k̃1J〉〈k̃2K , k2L| , kAI = MA

IJ k̃AJ , (3.17)

IFD
f0 =

(
M1

IJ |I〉|J〉 − iM1
ȧḃ
|ȧ〉|ḃ〉

)(
〈K|〈L|M2

LK − iM2
ḋċ
〈ċ|〈ḋ|

)
,

where we have omitted the subscripts for the oscillator vacua, and the index A has not

been summed. The supercharges and the fields satisfy the continuity conditions,

0 ≈ Qa
A + iMA

abQ̃
b
A , 0 ≈ Qȧ

A + iMA
ȧḃ

Q̃ȧ
A ,

0 ≈ SAa + iMA
abS̃

Ab , 0 ≈ ∂−XAI − MA
IJ∂+X̃AJ .

(3.18)

Here, we have used the fact that the interface is at τ = 0. One also finds that the

energy does not flow across the interface IFD, namely,

LA
n − L̃A

−n ≈ 0 , (3.19)

for A = 1, 2, where LA
n = LbA

n + LfA
n ,

LbA
n =

1

2

∑
m∈Z

αAI
n−mαAI

m , LfA
n =

1

2

∑
m∈Z

(m − n

2
)SAa

n−mSAa
m , (3.20)

and similarly for the left movers. The interface IFD is thus understood as a factorized

D-branes, a factor of which with A = 2 is in a conjugate form, “|Dp1〉〈Dp2|”. This

class is regarded as an analog of the totally reflecting case of the permeable conformal

interfaces [3]. In the following, we call this class/case the FD class/case.

Analog of topological interfaces

In the other class, the interface takes the form

ITP = CTP

∞∏
n=1

e
1
n

(α1I
−nα2I

n +M1
KIM2

KJ α̃1I
−nα̃2J

n )eS1a
−nS2a

n +M1
caM2

cbS̃
1a
−nS̃2b

n · ITP
b0 ITP

f0 ,

ITP
b0 =

∑
|k1I , k̃1J〉〈k̃2K , k2L| ,

k1I = k2I , M1
IJ k̃1J = M2

IJ k̃2J , (3.21)

ITP
f0 = |I〉TI〈I| + |ȧ〉TI〈ȧ| ,

TI = M1
PJM2

PK |J〉〈K| + M1
ṗḃ

M2
ṗċ|ḃ〉〈ċ| ,

10



where the oscillators with A = 2 are understood as acting on the zero-mode factors

from the right side, as mentioned. The supercharges and the fields satisfy the continuity

conditions,

Qa
1 ≈ Qa

2 , M1
abQ̃

b
1 ≈ M2

abQ̃
b
2 ,

Qȧ
1 ≈ Qȧ

2 , M1
ȧḃ

Q̃ḃ
1 ≈ M2

ȧḃ
Q̃ḃ

2 ,

S1a ≈ S2a , M1
abS̃

1b ≈ M2
abS̃

2b ,

∂−X1I ≈ ∂−X2I , M1
IJ∂+X1J ≈ M2

IJ∂+X2J .

(3.22)

We thus find that the interface ITP generates T-dualities. In addition, the continuity

conditions of the Virasoro generators reads

L1
n ≈ L2

n , L̃1
n ≈ L̃2

n , (3.23)

which also implies that the energy is conserved across the interface. Since the two sets

of the Virasoro generators are conserved across the interface, ITP is regarded as an

analog of the totally transmissive or the topological case of the permeable conformal

interfaces. It is known that the topological interfaces in two-dimensional CFT generate

T-dualities [4]. The transformations (3.22) are in accord with this fact. In the following,

we call this class/case the TP class/case.

3.2 Other cases

Similarly, one can construct the supersymmetric interfaces gluing type IIA theories

(IIA-IIA case) and those gluing type IIB and type IIA theory (IIB-IIA case) just by

appropriately changing the chirality of the left moving spinors in type IIA theories. For

instance, the interface gluing type IIB theory on the left side and type IIA theory on

the right satisfies the continuity conditions,

(Qa
1 + iR1

abQ̃
b
1)I = I(Qa

2 + iR2
aḃ

Q̃ḃ
2) ,

(Qȧ
1 + iR1

ȧḃ
Q̃ḃ

1)I = I(Qȧ
2 + iR2

ȧbQ̃
b
2) . (3.24)

We again find two classes of the interfaces. One is the FD class corresponding to

the factorized D-branes, and the other is the TP class corresponding to the topological

interfaces in two-dimensional CFT. The interfaces take the form which is obtained from

(3.4) by replacing S̃a
n, (M2

ab,M
2
ȧḃ

) and 2L〈ċ| with S̃ ȧ
n, (M2

aḃ
,M2

ȧb) and 2L〈c|, respectively.

4 Target-space properties

In the following sections, we would like to study properties of the supersymmetric

interfaces constructed in the previous section. The results below hold for interfaces of

any type of IIB-IIB, IIA-IIA and IIB-IIA, unless otherwise stated.

11



To be specific, we consider in this section the case where the target space is not

compactified, and choose

MA
IJ = M

(pA)
IJ , (4.1)

where M
(p)
IJ is given in (2.16) with odd or even p. Since kAI = k̃AI for the non-

compactified target space, the momenta are vanishing in the Neumann directions, i.e.,

kAI = k̃AI = 0 for I = 1, ..., pA + 1.

4.1 Target-space geometry

The target-space geometry of the supersymmetric interface can be studied in parallel

with that for the topological interface in two-dimensional CFT [10]. First, similarly to

the D-brane we introduce the position moduli. Taking into account the allowed zero

modes, we set Ib0 to be

IFD
b0 (Y ) =

∫
d8k1

(2π)8

d8k2

(2π)8
e−ik1·Y1 |k1I〉〈k2J |eik2·Y2

p1+1∏
I=1

2πδ(k1I)

p2+1∏
J=1

2πδ(k2J) , (4.2)

in the FD case, and

ITP
b0 (Y ) =

∫
d8k

(2π)8
e−ik·Y |kI〉〈kJ |

p+1∏
J=1

2πδ(kJ) , (4.3)

in the TP case. Here, we have omitted the vector indices in the contraction, and set

|kI〉 = |kI , k̃I = kI〉 and p = max(p1, p2). To probe the target-space geometry, we

further introduce the localized states,

|x〉 =

∫
d8k

(2π)8
e−ik·x|kI〉 . (4.4)

The amplitudes between these states in the presence of an interface is then given by

〈x| IFD
b0 |x′〉 =

8∏
I=p1+2

δ(xI − Y I
1 )

8∏
I=p2+2

δ(x′
I − Y I

2 ) ,

〈x| ITP
b0 |x′〉 =

8∏
I=p+2

δ(xI − x′
I − Y I) . (4.5)

The result in the FD case means that each D-brane factor in the interface is localized

at x = Y1 or x′ = Y2 in the Dirichlet directions, as usual. From the result in the TP

case, we find that the interface is localized in a submanifold x = x′ +Y in the common

Dirichlet directions in the doubled (transverse) target space R8 × R8 3 (x, x′). Such

submanifolds have been named “bi-branes” in the case of the topological conformal

interface [10].
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4.2 Coupling through interfaces

The bulk fields in the sector labeled by A = 1 and those by A = 2 couple to each other

through the interface. For instance, let us consider the massless NS-NS fields,

|ζ〉〉 := ζIJ |I〉|J〉 , (4.6)

where we have omitted the momentum factor. The coupling is then read off from

〈〈ζ| If0 |ζ ′〉〉 = ζ∗
IJMIJKLζ ′

LK . (4.7)

In the FD case, the right-hand side becomes (ζ∗
IJM

(p1)
IJ )(ζ ′

LKM
(p2)
LK ), and each factor

represents the coupling between the massless fields and the Dp1/Dp2-brane. By de-

composing M
(pA)
IJ according to the SO(8) representations, one finds that each factor

gives the source equations for the black pA-brane at the linearized level [19].

In the TP case, the right-hand side of (4.7) becomes

ζ∗
IJM

(p1)
PJ M

(p2)
PK ζ ′

IK =
∑
I,J

ζ∗
IJζ ′

IJµJ , (4.8)

where µJ = −1 for p′ + 2 ≤ J ≤ p + 1 and +1 otherwise, and p′ = min(p1, p2). For

example, when p = p′ + 1 in the IIB-IIA case, the above coupling reads

−ζ∗
p+1 p+1ζ

′
p+1 p+1 + ζ∗

(p+1 I)ζ
′
[p+1 I] + ζ∗

[p+1 I]ζ
′
(p+1 I) +

∑
I,J 6=p+1

ζ∗
IJζ ′

IJ , (4.9)

where ζ(IJ) = (ζIJ + ζJI)/2, ζ[IJ ] = (ζIJ − ζJI)/2. This is in accord with the Buscher

rules for the metric and the B-field, whose non-trivial part at the linearized level is

given via

g′
p+1 p+1 =

1

gp+1 p+1

, g′
p+1 I =

bp+1 I

gp+1 p+1

, b′p+1 I =
gp+1 I

gp+1 p+1

. (4.10)

Indeed, ζ(IJ) and ζ[IJ ] correspond to the fluctuations around the background hIJ =

gIJ − δIJ and bIJ itself, respectively, and similarly for ζ ′
(IJ), ζ ′

[IJ ]. Thus, from (4.9) one

finds that |ζ〉〉 couples, or is continued to, |ζ ′〉〉 according to (4.10). In addition, when

ζIJ ∼ δIJ , (4.8) shows that the fluctuation of the dilaton φ − φ0 = hII/4 couples to

φ′ − φ0 = h′
II/4 = (hII − 2hp+1 p+1)/4. This also agrees with the Buscher rule for the

dilaton φ′ = φ − 1
2
log gp+1 p+1.

5 Partition functions with interfaces inserted

Next, let us consider the partition functions with the interfaces inserted, from which

one can read off the spectrum of the modes coupled to the interfaces and the Casimir

energy between them. Here, we follow similar computations in [3, 12, 15].
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To be concrete, we consider the partition function where a pair of an interface and

its conjugate is inserted. As in the case of the D-brane [20], the conjugate interface I is

defined by a CPT conjugation of I, which consists of hermitian conjugation, complex

conjugation of c-numbers and a π-rotation. Consequently, one has I = CIIb ·I f , where

Ib =
∏∞

n=1 e
1
n

β̃BJ
n ·SIJ

AB ·βAI
n · Ib0 ,

I f =
∏∞

n=1 e−iT̃ Bb
n ∗Sab

AB∗T Aa
n · I f0 , I f0 = Mijkl|l〉2R|k〉2L · 1L〈j|1R〈i| ,

(5.1)

and Ib0 = I†
b0 for the bosonic zero-mode factors of the types in (4.2), (4.3). When IIA

theory is involved, the index structure of the spinor part should be modified appropri-

ately. Then, the partition function in question is given by

Z = tr
(
Iq

L2
0+L̃2

0
2 Iq

L1
0+L̃1

0
1

)
=: C2

IZ
osc
b Zb0Z

osc
f Zf0 . (5.2)

Here, qi = e−2πti (i = 1, 2) are parameters, Zosc
b/f is the contribution from the bosonic/spinor

oscillators, and Zb0/f0 is that from the bosonic/spinor zero-mode factors,

Zb0 = tr
(
Ib0q

L2
0+L̃2

0
2 Ib0q

L1
0+L̃1

0
1

)
,

Zf0 = tr
(
If0I f0

)
. (5.3)

To evaluate the bosonic oscillator part, we first linearize the oscillator bi-linear

forms by the formula

eCD =

∫
C

d2z

π
e−zz̄−zC−z̄D , (5.4)

which hold for bosonic operators satisfying [C, D] = 0. Next, we transfer the Virasoro

generators LAb
0 , L̃Ab

0 using [LA
0 , αAI

n ] = −nαAI
n until they hit the zero-mode factor Ib0

or Ib0. Furthermore, by the operator identity eCeD = eDeCe[C,D] which is valid when

[C, D] is a c-number, we commute the oscillators to be annihilated on the zero-mode

factors. It then follows that

Zosc
b =

∞∏
n=1

∫
d2zn

π16

d2wn

π16
e−znz̄n−wnw̄n · eqn

1

[
(w̄n1ST

11−w̄n2ST
12)zn1+(z̄n1S11−z̄n2S21)wn1

]
× eqn

2

[
(w̄n2ST

22−w̄n1ST
21)zn2+(z̄n2S22−z̄n1S12)wn2

]
(5.5)

=
∞∏

n=1

det−1Db
n ,

where zn = (zI
1n, z

I
2n), wn = (wI

1n, w
I
2n) (I = 1, ..., 8) and the vector indices have been
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suppressed. The matrices in the determinants are given by

Db
n = D1b

n D2b
n D3b

n ,

D1b
n = 1 − qn

1 (qn
1ST

11S11 + qn
2ST

21S21) , (5.6)

D2b
n = 1 − qn

2 (qn
2ST

22S22 + qn
1ST

12S12) ,

D3b
n = 1 − qn

1 qn
2 (D1b

n )−1(qn
1ST

11S12 + qn
2ST

21S22)(D
2b
n )−1(qn

2ST
22S21 + qn

1ST
12S11) .

To evaluate the spinor oscillator part, we linearize the oscillator bi-linear forms by

eCD =

∫
dθdθ̄ e−θθ̄−θC−θ̄D , (5.7)

which hold for fermionic operators satisfying {C, D} = 0. Repeating similar algebras

in the above, we find that

Zosc
f =

∞∏
n=1

det Df
n , (5.8)

where

Df
n = D1f

n D2f
n D3f

n ,

D1f
n = 1 − qn

1 (qn
1ST

11S11 − qn
2ST

21S21) , (5.9)

D2f
n = 1 − qn

2 (qn
2ST

22S22 − qn
1ST

12S12) ,

D3f
n = 1 − qn

1 qn
2 (D2f

n )−1(qn
2ST

22S21 − qn
1ST

12S11)(D
1f
n )−1(qn

1ST
11S12 − qn

2ST
21S22) .

The matrices in the oscillator parts are simplified by substituting the generic forms

of SIJ
AB, Sab

AB in (3.15) without using (3.16):

Db
n = Df

n =
[
1 − (q2n

1 + q2n
2 ) cos2 ϑ − 2qn

1 qn
2 sin2 ϑ + q2n

1 q2n
2

]
· 18 , (5.10)

where we have set a11 = cos ϑ. The bosonic part Db
n is a simple generalization (eight

copies) of the result in the c = 1 permeable conformal interface [3].

The evaluation of the zero-mode part is straightforward. For example, for IFD
b0 and

ITP
b0 in (4.2) and (4.3), we find that

ZFD
b0 = V p1+p2+2(π

√
2t1)

p1−7(π
√

2t2)
p2−7 ,

ZTP
b0 = V p+9(π

√
2t)p−7 , (5.11)

where V = 2πδ(0) is the volume and we have set q1q2 = q = e−2πt. In addition, because

of the supertrace tr(|ȧ〉〈ḃ|) = −δȧḃ, the contributions from the NS-NS and R-R sectors

cancel each other, and hence

Zf0 = (δII − δȧȧ)
2 = 0 , (5.12)
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for both FD and TP cases.

In sum, the partition function with a pair of an interface and its conjugate inserted

is given by

ZFD = C2
FDZb0Zf0Z

osc
b Zosc

f ,
(
Zosc

b

)−1
= Zosc

f =
∞∏

n=1

(1 − q2n
1 )8(1 − q2n

2 )8 ,

ZTP = C2
TPZb0Zf0Z

osc
b Zosc

f ,
(
Zosc

b

)−1
= Zosc

f =
∞∏

n=1

(1 − qn
1 qn

2 )16 , (5.13)

in the FD and TP cases, respectively. One can confirm that ZFD corresponds to the

product of a cylinder amplitude between Dp1-branes with the modular parameter t1

and the one between Dp2-branes with the modular parameter t2 (see, e.g., [19]). If one

requires ZFD to precisely match the product of the D-brane amplitudes, the normaliza-

tion constant CFD is fixed. The result in the TP case is regarded as a square of ordinary

cylinder amplitudes between D-branes with the modular parameter t = t1 + t2. This is

in accord with the interpretation that ITP is “topological” and the modes in each sector

can propagate (almost) freely across it. Though the normalization constant CTP would

be fixed by requiring ZTP to match the D-brane amplitudes, it is still an open question

what condition should be imposed on the normalization of the interfaces gluing two

different theories. We refer to [2, 11, 12] for the determination of the normalization of

the topological interface in rational or c = 1 CFT.

In the limit where q1 → 1 or q2 → 1, the interface and its conjugate are fused, and

one may extract from Z the spectrum of the modes which couple to I or I. As is clear

from the results in the above, the spectrum for the supersymmetric interfaces we have

constructed is essentially the same as that for ordinary D-branes.

On the other hand, first taking an opposite limit, e.g., q2 → 0, and then q1 → 1,

one obtains the Casimir energy between the interface and its conjugate. As in the case

of the permeable conformal interface, one finds

E = Eb + Ef , Eb = −Ef = − 1

πd
Li2(cos2 ϑ) , (5.14)

where Eb, Ef are contributions from the bosons and the spinors, respectively, and

Li2(x) =
∑∞

n=1 xn/n2 is the dilogarithm function. We have also set q1 = e−2πd/T with

2d and 2T being the distances between and along the interfaces, respectively. This is

a simple generalization of the result in [3]. The total Casimir energy just vanishes due

to the supersymmetry.

The computation of the partition in this section can be generalized to more general

settings. First, when the conjugate interface I is replaced by the conjugate of the “anti-

interfaces” (analog of the anti-D-branes) where the signs of the SO(8) spinor matrices
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MA
αβ are different from those in I [3], extra signs appear in Zf0 and in Df

n through

ST
AB. In this case, the oscillator contributions Db

n and Df
n do not cancel each other

anymore. The zero-mode part also changes depending on the signs of MA
αβ. Second,

one can insert more interfaces into the partition function along the line of [15], from

which, e.g., entanglement entropy across the interface can be derived by using the

replica trick.

6 Transformation of D-branes

In two-dimensional CFT, the conformal interface transforms a set of conformal bound-

ary states (D-branes) to another. Similarly, the supersymmetric interface transforms

D-branes in type II theories. In this section, we derive those transformations. To be

specific, we consider the interface gluing type IIB and IIA theory. The results for other

types of IIB-IIB and IIA-IIA follow simply by appropriately changing the chirality of

the relevant spinors and the index structure of the matrices.

In order to define the transformation of a supersymmetric boundary state by an

interface, we follow a similar procedure in the fusion of the c = 1 conformal interfaces

[12]. We then regularize the product of the interface and the boundary state by a

parameter q, and take the limit q → 1:

|B′〉 := lim
q→1

|B′〉q =: lim
q→1

C(q)IqL2
0+L̃2

0 |B〉 . (6.1)

Here, |B〉 is a boundary state in type IIA theory. We denote the SO(8) matrices

appearing there by (MB
IJ ,MB

aḃ
,MB

ȧb). The interface I is gluing type IIB theory on the

left and IIA theory on the right. The constant C(q), which depends on I and |B〉,
should be adjusted appropriately. Below, we decompose the regularized product as

|B′〉q = C(q)CICB|B′〉qb|B′〉qf into the normalization factors and the contributions from

the bosons and the spinors, respectively.

The bosonic/spinor factor |B′〉qb/f is evaluated as in the previous section. For the

bosonic factor, we first linearize the bi-linear forms in I and |B〉 using (5.4). Next,

the oscillators and the Virasoro generators are commuted until they hit the oscillator

vacua to be annihilated or become c-numbers. We then find that

|B′〉qb =
∏
n

∫
d2zn

π16

d2wn2

π8
e−znz̄n−wn2w̄n2eqn

[
w̄n2MBzn2+(z̄n2S22−z̄n1S12)wn2

]
× e−

1
n

zn1α1
−n−(z̄n1S11−z̄n2S21)α̃1

−n · |B′〉qb0 (6.2)

= det−1Db ·
∏
n

e
1
n

α1
−n(S11+q2nS12MBD−1

b S21)α̃1
−n · |B′〉qb0 ,
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where zn = (zI
1n, zI

2n), wn2 = (wI
n2), |B′〉qb0 := Ib0q

L2
0+L̃2

0|B〉b0 and

(Db)IJ = (1 − q2nS22M
B)IJ . (6.3)

Similarly, for the spinor factor we find that

|B′〉qf = detDf ×
∏
n

e−iS1
−n(S11+q2nS12MD−1

f S21)S̃1
−n · |B′〉f0 , (6.4)

where

|B′〉f0 := If0|B〉f0 (6.5)

= (MIJKLMB
LK − iMIJcḋM

B
ḋc

)|I〉|J〉 + (MȧḃKLMB
LK − iMȧḃcḋM

B
ḋc

)|ȧ〉|ḃ〉 ,

and

(Df)ȧḃ = (1 − q2nS22M
B)ȧḃ . (6.6)

The results so far are generic. To compute the remaining bosonic zero-mode factor,

we specialize to the case where Ib0 is given by IFD
b0 in (4.2) or ITP

b0 in (4.3), and |B〉b0

by

|B〉b0(YB, pB) =

∫
d8k

(2π)8
e−ik·YB |kI〉

pB+1∏
J=1

2πδ(kJ) , (6.7)

which corresponds to the choice MB
IJ = M

(pB)
IJ in a non-compactified target space. We

then find that

|B′〉q;FD
b0

q→1−→ V r′+1

8∏
J=r+2

δ(Y J
2 − Y J

B ) × |B〉b0(Y1, p1) ,

|B′〉q;TP
b0

q→1−→ V s′+1 × |B〉b0(Y + YB, s) , (6.8)

for IFD
b0 and ITP

b0 , respectively, where r = max(p2, pB), r′ = min(p2, pB), s = max(p, pB)

and s′ = min(p, pB).

Combining all, we obtain the transformed supersymmetric boundary state |B′〉. In

the FD case, we have

|B′〉FD = CB′

∞∏
n=1

e
1
n

M1
IJα1I

−nα̃1J
−n−iM1

abS
1a
−nS̃1b

−n|B′〉0 ,

|B〉b0 = |B′〉q=1
b0 , |B′〉f0 = M1

IJ |I〉|J〉 − iM1
ȧḃ
|ȧ〉|ḃ〉 , (6.9)

where

CB′ = CICB(M2
LKMB

LK − M2
ḋc

MB
ḋc

) · lim
q→1

C(q) det−1Db detDf , (6.10)
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and

(Db)IJ = 1IJ − q2nM2
KIM

B
KJ , (Df)ȧḃ = 1ȧḃ − q2nM2

cȧM
B
cḃ

. (6.11)

Since the factors in CB′ and |B〉b0 may be vanishing or diverging, the constant C(q)

should be chosen accordingly, taking also into account the normalization of the bound-

ary state and the interface. The resultant boundary state essentially gives the left-hand

factor of the factorized D-branes I, e.g., the ordinary Dp1-brane when M1
IJ = M

(p1)
IJ .

In the TP case, we have

|B′〉TP = CB′

∞∏
n=1

e
1
n

MB′
IJ α1I

−nα̃1J
−n−iMB′

ab S1a
−nS̃1b

−n |B′〉0 ,

|B〉b0 = |B′〉q=1
b0 , |B′〉f0 = MB′

IJ |I〉|J〉 − iMB′

ȧḃ
|ȧ〉|ḃ〉 , (6.12)

where

MB′

IJ = MB
IKM2

PKM1
PJ , MB′

ab = MB
aḃ

M2
cḃ
M1

cb , (6.13)

and

CB′ = CICB lim
q→1

C(q) . (6.14)

We note Db = Df = 18 in this case. The resultant boundary state describes a D-brane

associated with the matrices MB′
= MB(M2)T M1 with vector and spinor indices,

respectively. For the choices of the zero-mode factors (4.3) and (6.7), the position

moduli are additive and allowed in the common Dirichlet directions for I and |B〉.

7 Summary and discussion

We have constructed the world-sheet interfaces which satisfy the continuity conditions

on the space-time supercharges in type II superstring theories in the Green-Schwarz

formalism. We started with the ansatz (3.4) for the interface gluing type IIB theories,

which follows from the unfolding procedure of the supersymmetric boundary state.

The conditions on the linearly realized supersymmetry (3.1) reduce to those on the

spinor zero-mode factor. We found two classes of the solutions (3.13) and (3.14). The

conditions on the non-linearly realized supersymmetry (3.2) reduce to those on the

“S-Matrix” SAB which determines the continuity conditions for the oscillator modes.

We in addition required that the continuity conditions induce linear transformations of

the fields and hence both zero and non-zero modes transform homogeneously. We then

found a solution (3.15). The requirement for the homogeneity of the transformations
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correlated the S-matrix and the spinor zero-mode factor, which led to the condition

(3.16). As a result, we had two classes of the interfaces (3.17) and (3.21) in the IIB-IIB

case. One class, which is labeled by FD, represents factorized D-branes. The other

class, which is labeled by TP, is regarded as an analog of the topological interface in

two-dimensional CFT, and found to generate T-dualities. This result is in accord with

the fact that the topological conformal interface generates symmetries of CFT including

T-dualities [4]. The interfaces gluing IIA theories or IIB and IIA theory are similarly

obtained.

Having obtained the supersymmetric interfaces, we then studied their properties.

First, we observed that the interface in the TP case is interpreted as a submanifold (“bi-

brane”) in the doubled (transverse) target space R8 × R8, similarly to the topological

conformal interface [10]. Second, we studied the coupling through the interface among

the NS-NS massless fields, as an example. In the TP case, we found that the coupling

indeed agrees with the Buscher rules at the linearized level. Third, we computed

the partition function with a pair of an interface and its conjugate inserted. In a

limit, one can read off the spectrum of the modes coupled to the interface. We found

that it is essentially the same as the spectrum for the ordinary D-brane. In another

limit, we also obtained the Casimir energy between the interfaces, which is regarded

as a generalization of the result for the permeable interface in two-dimensional CFT

[3]. Finally, we derived the transformations of the D-branes/supersymmetric boundary

states by the interface. In the FD case, a D-brane is transformed, when non-vanishing,

to the “left-hand side” of the factorized D-branes represented by the interface. In the

TP case, the transformation is summarized as the multiplication rule (6.13) of the

SO(8) matrices which specify the boundary conditions of the fields. When the target

space is not compactified and the SO(8) matrices are those for simple D-branes, M (p)’s

in (2.16), (2.18), the position moduli in the resultant D-brane are additive and allowed

only in the common Dirichlet directions.

The supersymmetric interface in the TP case is regarded, as anticipated, as a gen-

erator of T-dualities in type II theories, as well as an operator acting on the space of

the D-branes. Applications to the study of non-perturbative aspects and symmetries of

superstring theory would deserve further investigations. In this respect, an application

to solution generating algebras such as the U-duality and the Geroch group has been

suggested [9]. Connection to double field theory is also expected from the doubling and

unfolding procedure in the construction, and from the interpretation as a “bi-brane”

in the doubled target space. An interesting possibility would be that the interfaces are

realized as solitonic solutions in double field theory, similarly to the D-branes/black

p-branes in supergravity.

Our results in this paper would be extended in several directions. First, it would be
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of interest to study whether the continuity conditions (3.1), (3.2) or (A.1), (A.2) allow

more general solutions, in particular, those which connect the FD and TP cases as in

the permeable conformal interface. Second, when the target space is compactified, one

can expect rich structures of the algebras among the interfaces and the D-branes, as

in the fusion of the c = 1 conformal interfaces [12]. This direction should be explored

further. Third, in our construction the conditions on the modes are of “three-term

relation” given by SAB (suppressing the vector/spinor indices), whereas those for the

supercharges are of “four-term relation”. The compatibility of these two types led to

strong constraints, to leave the two classes of the interfaces. Whether one may consider

more general types of the continuity conditions than (3.1), (3.2) would be an issue for

future.

The interfaces constructed in this paper may avoid the difficulty regarding the nega-

tive norm states, since they preserve two sets of the Virasoro generators. As mentioned

in [3], whether there could be exceptions to the argument there deserves further consid-

erations. This question is closely related to the search for the more general interfaces

discussed above. Finally, at least the supersymmetric interfaces constructed in this

paper should be realized as conformal interfaces in the RNS formalism of superstring

theory. In this way, one may study the interface in superstring theory (for fixed genus)

in a manifestly covariant manner, though at the cost of some complications related to

space-time supersymmetry and ghosts.
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A Appendix

In this appendix, we list the equations which result from the continuity conditions of

the supercharges (3.1), (3.2) in the IIB-IIB case. First, acting on the spinor zero-mode
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factor (3.11) with the linearly realized supercharges, one finds from (3.1) that

0 = MȧJKḋσ̄
I
ȧa + iR1

abMIḃKḋσ̄
J
ḃb
− MIJKLσL

aḋ
+ iR2

abMIJċḋσ̄
K
ċb ,

0 = MȧJċLσ̄I
ȧa + iR1

abMIḃċLσ̄J
ḃb
− MIJċḋσ̄

L
ḋa

− iR2
abMIJKLσK

bċ ,

0 = MȧḃKLσ̄I
ȧa + iR1

abMIJKLσJ
bḃ
− MIḃKḋσ̄

L
ḋa

− iR2
abMIḃċLσ̄K

ċb ,

0 = MIJKLσI
aȧ − iR1

abMȧḃKLσ̄J
ḃb
− MȧJKḋσ̄

L
ḋa

− iR2
abMȧJċLσ̄K

ċb ,

0 = MIḃċLσI
aȧ − iR1

abMȧJċLσJ
bḃ
− Mȧḃċḋσ̄

L
ḋa

− iR2
abMȧḃKLσK

bċ , (A.1)

0 = MIḃKḋσ
I
aȧ − iR1

abMȧJKḋσ
J
bḃ
− MȧḃKLσL

aḋ
+ iR2

abMȧḃċḋσ̄
K
ċb ,

0 = MIJċḋσ
I
aȧ − iR1

abMȧḃċḋσ̄
J
ḃb
− MȧJċLσL

aḋ
+ iR2

abMȧJKḋσ
K
bċ ,

0 = Mȧḃċḋσ̄
I
ȧa + iR1

abMIJċḋσ
J
bḃ
− MIḃċLσL

aḋ
+ iR2

abMIḃKḋσ
K
bċ .

Next, following the procedure described in the main text, a sufficient condition for (3.2)

to hold turns out to be

0 = σI
aȧSIJ

12 − iσJ
bȧSab

12 , 0 = σI
aȧSab

12 + iσJ
bȧSIJ

12 ,

0 = σI
aȧSIJ

11 − σJ
bḃ
R1

ȧḃ
Sab

11 , 0 = σI
aȧSab

11 − σJ
bḃ
R1

ȧḃ
SIJ

11 ,

0 = σI
aȧSJI

22 − σJ
bḃ
R2

ȧḃ
Sba

22 , 0 = σI
aȧSba

22 − σJ
bḃ
R2

ȧḃ
SJI

22 ,

0 = σI
aḃ

R1
ȧḃ
SJI

21 + iσJ
bḃ
R2

ȧḃ
Sba

21 , 0 = σI
aḃ

R1
ȧḃ
Sba

21 − iσJ
bḃ
R2

ȧḃ
SJI

21 .

(A.2)

The equations in other cases, i.e., in the IIA-IIA and IIB-IIA cases, are obtained by

appropriately changing the chirality and hence index structures.
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