4 research outputs found
Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial
SummaryBackground Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatoryactions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19.Methods In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospitalwith COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients wererandomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once perday by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatmentgroups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment andwere twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants andlocal study staff were not masked to the allocated treatment, but all others involved in the trial were masked to theoutcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treatpopulation. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.Findings Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) wereeligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomlyallocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall,561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days(rate ratio 0·97, 95% CI 0·87–1·07; p=0·50). No significant difference was seen in duration of hospital stay (median10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days(rate ratio 1·04, 95% CI 0·98–1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, nosignificant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilationor death (risk ratio 0·95, 95% CI 0·87–1·03; p=0·24).Interpretation In patients admitted to hospital with COVID-19, azithromycin did not improve survival or otherprespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restrictedto patients in whom there is a clear antimicrobial indication
Oxytocin is an anabolic bone hormone
We report that oxytocin (OT), a primitive neurohypophyseal hormone, hitherto thought solely to modulate lactation and social bonding, is a direct regulator of bone mass. Deletion of OT or the OT receptor (Oxtr) in male or female mice causes osteoporosis resulting from reduced bone formation. Consistent with low bone formation, OT stimulates the differentiation of osteoblasts to a mineralizing phenotype by causing the up-regulation of BMP-2, which in turn controls Schnurri-2 and 3, Osterix, and ATF-4 expression. In contrast, OT has dual effects on the osteoclast. It stimulates osteoclast formation both directly, by activating NF-κB and MAP kinase signaling, and indirectly through the up-regulation of RANK-L. On the other hand, OT inhibits bone resorption by mature osteoclasts by triggering cytosolic Ca2+ release and NO synthesis. Together, the complementary genetic and pharmacologic approaches reveal OT as a novel anabolic regulator of bone mass, with potential implications for osteoporosis therapy
Krox20/EGR2 deficiency accelerates cell growth and differentiation in the monocytic lineage and decreases bone mass
Krox20/EGR2, one of the 4 early growth response genes, is a highly conserved transcription factor implicated in hindbrain development, peripheral nerve myelination, tumor suppression, and monocyte/macrophage cell fate determination. Here, we established a novel role for Krox20 in postnatal skeletal metabolism. Microcomputed tomographic analysis of 4- and 8-week-old mice revealed a low bone mass phenotype (LBM) in both the distal femur and the vertebra of Krox20+/− mice. This was attributable to accelerated bone resorption as demonstrated in vivo by increased osteoclast number and serum C-terminal telopeptides, a marker for collagen degradation. Krox20 haploinsufficiency did not reduce bone formation in vivo, nor did it compromise osteoblast differentiation in vitro. In contrast, growth and differentiation were significantly stimulated in preosteoclast cultures derived from Krox20+/− splenocytes, suggesting that the LBM is attributable to Krox20 haploinsufficiency in the monocytic lineage. Furthermore, Krox20 silencing in preosteoclasts increased cFms expression and response to macrophage colony-stimulating factor, leading to a cell-autonomous stimulation of cell-cycle progression. Our data indicate that the antimitogenic role of Krox20 in preosteoclasts is the predominant mechanism underlying the LBM phenotype of Krox20-deficient mice. Stimulation of Krox20 expression in preosteoclasts may present a viable therapeutic strategy for high-turnover osteoporosis