9,071 research outputs found
WHIZARD 2.2 for Linear Colliders
We review the current status of the WHIZARD event generator. We discuss, in
particular, recent improvements and features that are relevant for simulating
the physics program at a future Linear Collider.Comment: Talk presented at the International Workshop on Future Linear
Colliders (LCWS13), Tokyo, Japan, 11-15 November 201
Exponential localization of hydrogen-like atoms in relativistic quantum electrodynamics
We consider two different models of a hydrogenic atom in a quantized
electromagnetic field that treat the electron relativistically. The first one
is a no-pair model in the free picture, the second one is given by the
semi-relativistic Pauli-Fierz Hamiltonian. We prove that the no-pair operator
is semi-bounded below and that its spectral subspaces corresponding to energies
below the ionization threshold are exponentially localized. Both results hold
true, for arbitrary values of the fine-structure constant, , and the
ultra-violet cut-off, , and for all nuclear charges less than the
critical charge without radiation field, . We obtain
similar results for the semi-relativistic Pauli-Fierz operator, again for all
values of and and for nuclear charges less than .Comment: 37 page
Coexistence of Antiferromagnetism and Superconductivity in Electron-doped High-Tc Superconductors
We present magnetotransport evidence for antiferromagnetism in films of the
electron-doped cuprates PrCeCuO. Our results show clear
signature of static antiferromagnetism up to optimal doping x=0.15, with a
quantum phase transition close to x=0.16, and a coexistence of static
antiferromagnetism and superconductivity for 0.12x0.15
Hyperfine splitting in non-relativistic QED: uniqueness of the dressed hydrogen atom ground state
We consider a free hydrogen atom composed of a spin-1/2 nucleus and a
spin-1/2 electron in the standard model of non-relativistic QED. We study the
Pauli-Fierz Hamiltonian associated with this system at a fixed total momentum.
For small enough values of the fine-structure constant, we prove that the
ground state is unique. This result reflects the hyperfine structure of the
hydrogen atom ground state.Comment: 22 pages, 3 figure
Sensory substitution for space gloves and for space robots
Sensory substitution systems for space applications are described. Physical sensors replace missing human receptors and feed information to the interpretive centers of a different sense. The brain is plastic enough so that, with training, the subject localizes the input as if it were received through the missing receptors. Astronauts have difficulty feeling objects through space suit gloves because of their thickness and because of the 4.3 psi pressure difference. Miniature force sensors on the glove palm drive an electrotactile belt around the waist, thus augmenting the missing tactile sensation. A proposed teleoperator system with telepresence for a space robot would incorporate teleproprioception and a force sensor/electrotactile belt sensory substitution system for teletouch
Uniqueness of the ground state in the Feshbach renormalization analysis
In the operator theoretic renormalization analysis introduced by Bach,
Froehlich, and Sigal we prove uniqueness of the ground state.Comment: 10 page
Ground States in the Spin Boson Model
We prove that the Hamiltonian of the model describing a spin which is
linearly coupled to a field of relativistic and massless bosons, also known as
the spin-boson model, admits a ground state for small values of the coupling
constant lambda. We show that the ground state energy is an analytic function
of lambda and that the corresponding ground state can also be chosen to be an
analytic function of lambda. No infrared regularization is imposed. Our proof
is based on a modified version of the BFS operator theoretic renormalization
analysis. Moreover, using a positivity argument we prove that the ground state
of the spin-boson model is unique. We show that the expansion coefficients of
the ground state and the ground state energy can be calculated using regular
analytic perturbation theory
Is 0716+714 a superluminal blazar?
We present an analysis of new and old high frequency VLBI data collected
during the last 10 years at 5--22 GHz. For the jet components in the mas-VLBI
jet, two component identifications are possible. One of them with
quasi-stationary components oscillating about their mean positions. Another
identification scheme, which formally gives the better expansion fit, yields
motion with for km s Mpc and .
This model would be in better agreement with the observed rapid IDV and the
expected high Lorentz-factor, deduced from IDV.Comment: 2 pages, 3 figures, appears in: Proceedings of the 6th European VLBI
Network Symposium held on June 25th-28th in Bonn, Germany. Edited by: E. Ros,
R.W. Porcas, A.P. Lobanov, and J.A. Zensu
A stochastic FDTD model of electromagnetic wave propagation in magnetized ionospheric plasma
pre-printCommunications, surveillance, and navigation capabilities rely heavily on accurate knowledge of electromagnetic (EM) signal propagation characteristics through and reflected by the Earth's ionosphere. Satellite communications, over-the-horizon radar, and target direction finding are a few example applications. Poor understanding of either the ionospheric state or the complete signal propagation characteristics through the ionosphere can negatively affect the performance of these applications. For example, inaccurate signal predictions may lead to erroneous target identification and coordinate estimation
Ground State and Resonances in the Standard Model of Non-relativistic QED
We prove existence of a ground state and resonances in the standard model of
the non-relativistic quantum electro-dynamics (QED). To this end we introduce a
new canonical transformation of QED Hamiltonians and use the spectral
renormalization group technique with a new choice of Banach spaces.Comment: 50 pages change
- …