8,153 research outputs found

    Ground States in the Spin Boson Model

    Full text link
    We prove that the Hamiltonian of the model describing a spin which is linearly coupled to a field of relativistic and massless bosons, also known as the spin-boson model, admits a ground state for small values of the coupling constant lambda. We show that the ground state energy is an analytic function of lambda and that the corresponding ground state can also be chosen to be an analytic function of lambda. No infrared regularization is imposed. Our proof is based on a modified version of the BFS operator theoretic renormalization analysis. Moreover, using a positivity argument we prove that the ground state of the spin-boson model is unique. We show that the expansion coefficients of the ground state and the ground state energy can be calculated using regular analytic perturbation theory

    Uniqueness of the ground state in the Feshbach renormalization analysis

    Full text link
    In the operator theoretic renormalization analysis introduced by Bach, Froehlich, and Sigal we prove uniqueness of the ground state.Comment: 10 page

    Optical conductivity for a dimer in the Dynamic Hubbard model

    Full text link
    The Dynamic Hubbard Model represents the physics of a multi-band Hubbard model by using a pseudo-spin degree of freedom to dynamically modify the on-site Coulomb interaction. Here we use a dimer system to obtain analytical results for this model. The spectral function and the optical conductivity are calculated analytically for any number of electrons, and the distribution of optical spectral weight is analyzed in great detail. The impact of polaron-like effects due to overlaps between pseudo-spin states on the optical spectral weight distribution is derived analytically. Our conclusions support results obtained previously with different models and techniques: holes are less mobile than electrons.Comment: 11 pages, 4 figure

    Kramers degeneracy theorem in nonrelativistic QED

    Full text link
    Degeneracy of the eigenvalues of the Pauli-Fierz Hamiltonian with spin 1/2 is proven by the Kramers degeneracy theorem. The Pauli-Fierz Hamiltonian at fixed total momentum is also investigated.Comment: LaTex, 11 page

    Theory of pressure acoustics with boundary layers and streaming in curved elastic cavities

    Get PDF
    The acoustic fields and streaming in a confined fluid depend strongly on the acoustic boundary layer forming near the wall. The width of this layer is typically much smaller than the bulk length scale set by the geometry or the acoustic wavelength, which makes direct numerical simulations challenging. Based on this separation in length scales, we extend the classical theory of pressure acoustics by deriving a boundary condition for the acoustic pressure that takes boundary-layer effects fully into account. Using the same length-scale separation for the steady second-order streaming, and combining it with time-averaged short-range products of first-order fields, we replace the usual limiting-velocity theory with an analytical slip-velocity condition on the long-range streaming field at the wall. The derived boundary conditions are valid for oscillating cavities of arbitrary shape and wall motion as long as the wall curvature and displacement amplitude are both sufficiently small. Finally, we validate our theory by comparison with direct numerical simulation in two examples of two-dimensional water-filled cavities: The well-studied rectangular cavity with prescribed wall actuation, and the more generic elliptical cavity embedded in an externally actuated rectangular elastic glass block.Comment: 18 pages, 5 figures, pdfLatex, RevTe

    Ground State and Resonances in the Standard Model of Non-relativistic QED

    Full text link
    We prove existence of a ground state and resonances in the standard model of the non-relativistic quantum electro-dynamics (QED). To this end we introduce a new canonical transformation of QED Hamiltonians and use the spectral renormalization group technique with a new choice of Banach spaces.Comment: 50 pages change
    corecore