48 research outputs found

    Modelling the statistical dependence of rainfall event variables by a trivariate copula function

    Get PDF
    In many hydrological models, such as those derived by analytical probabilistic methods, the precipitation stochastic process is represented by means of individual storm random variables which are supposed to be independent of each other. However, several proposals were advanced to develop joint probability distributions able to account for the observed statistical dependence. The traditional technique of the multivariate statistics is nevertheless affected by several drawbacks, whose most evident issue is the unavoidable subordination of the dependence structure assessment to the marginal distribution fitting. Conversely, the copula approach can overcome this limitation, by dividing the problem in two distinct parts. Furthermore, goodness-of-fit tests were recently made available and a significant improvement in the function selection reliability has been achieved. Herein the dependence structure of the rainfall event volume, the wet weather duration and the interevent time is assessed and verified by test statistics with respect to three long time series recorded in different Italian climates. Paired analyses revealed a non negligible dependence between volume and duration, while the interevent period proved to be substantially independent of the other variables. A unique copula model seems to be suitable for representing this dependence structure, despite the sensitivity demonstrated by its parameter towards the threshold utilized in the procedure for extracting the independent events. The joint probability function was finally developed by adopting a Weibull model for the marginal distributions

    Hydrological and meteorological aspects of floods in the Alps: an overview

    No full text
    International audienceThis introductory paper presents and summarises recent research on meteorological and hydrological aspects of floods in the Alps. The research activities were part of the international research project RAPHAEL (Runoff and Atmospheric Processes for flood HAzard forEcasting and controL) together with experiments within the Special Observing Period-SOP conducted in autumn 1999 for the Mesoscale Alpine Programme ?MAP. The investigations were based on both field experiments and numerical simulations, using meteorological and hydrological models, of ten major floods that occurred in the past decade in the European Alps. The two basins investigated were the Ticino (6599 km2) at the Lago Maggiore outlet on the southern side of the Alps and the Ammer catchment (709 km2) in the Bavarian Alps. These catchments and their sub-catchments cover an appropriate range of spatial scales with which to investigate and test in an operational context the potential of both mesoscale meteorological and distributed hydrological models for flood forecasting. From the data analyses and model simulations described in this Special Issue, the major sources of uncertainties for flood forecasts in mid-size mountain basins are outlined and the accuracy flood forecasts is assessed
    corecore