5,301 research outputs found

    Analysis of melt-textured YBCO with nanoscale inclusions

    Get PDF
    Recently, particles with the chemical composition Y2Ba 4CuMOx where M U, Nb, Zr, etc., and sizes in the range of 50 - 200 nm have been generated within the YBCO matrix of bulk, melt-processed superconductors in order to serve as effective flux pinning sites. By means of AFM and electron backscatter diffraction (EBSD) measurements, we analyse the spatial distribution and the size distribution of these nanoparticles within the superconducting YBCO matrix

    Investigation of grain orientations of melt-textured HTSC with addition of uranium oxide, Y2O3 and Y2BaCuO5

    Get PDF
    Local grain orientations were studied in melt-textured YBCO samples processed with various amounts of depleted uranuim oxide (DU) and Y 2O3 by means of electron backscatter diffraction (EBSD) analysis. The addition of DU leads to the formation of Ucontaining nanoparticles (Y2Ba4CuUOx) with sizes of around 200 nm, embedded in the superconducting Y-123 matrix. The orientation of the Y 2BaCuO5 (Y-211) particles, which are also present in the YBCO bulk microstructure, is generally random as is the case in other melttextured Y-123 samples. The presence of Y-211 particles, however, also affects the orientation of the Y-123 matrix in these samples

    EBSD characterisation of Y2Ba4CuUOx phase in melttextured YBCO with addition of depleted uranium oxide

    Get PDF
    Melt-textured YBCO samples processed with added Y2O3 and depleted uranium oxide (DU) contain nano-particles, which have been identified previously as Y2Ba4CuUOx (U-411). This phase has a cubic unit cell, which is clearly distinct from the orthorhombic Y-123 and Y-211 phases within the YBCO system. In samples with a high amount of DU addition (0.8 wt-% DU), U-2411 particles have sizes between 200 nm and several νm, so identification of the Kikuchi patterns of this phase becomes possible. Together with a parallel EDX analysis, the particles embedded in the Y-123 matrix can be identified unambiguously. In this way, a three-phase EBSD scan becomes possible, allowing also the identification of nanometre-sized particles in the sample microstructure

    A Fuzzy Approach for Feature Evaluation and Dimensionality Reduction to Improve the Quality of Web Usage Mining Results

    Get PDF
    The explosive growth in the information available on the Web has necessitated the need for developing Web personalization systems that understand user preferences to dynamically serve customized content to individual users. Web server access logs contain substantial data about the accesses of users to a Web site. Hence, if properly exploited, the log data can reveal useful information about the navigational behaviour of users in a site. In order to reveal the information about user preferences from, Web Usage Mining is being performed. Web Usage Mining is the application of data mining techniques to web usage log repositories in order to discover the usage patterns that can be used to analyze the user’s navigational behavior. WUM contains three main steps: preprocessing, knowledge extraction and results analysis. During the preprocessing stage, raw web log data is transformed into a set of user profiles. Each user profile captures a set of URLs representing a user session. Clustering can be applied to this sessionized data in order to capture similar interests and trends among users’ navigational patterns. Since the sessionized data may contain thousands of user sessions and each user session may consist of hundreds of URL accesses, dimensionality reduction is achieved by eliminating the low support URLs. Very small sessions are also removed in order to filter out the noise from the data. But direct elimination of low support URLs and small sized sessions may results in loss of a significant amount of information especially when the count of low support URLs and small sessions is large. We propose a fuzzy solution to deal with this problem by assigning weights to URLs and user sessions based on a fuzzy membership function. After assigning the weights we apply a "Fuzzy c-Mean Clustering" algorithm to discover the clusters of user profiles. In this paper, we describe our fuzzy set theoretic approach to perform feature selection (or dimensionality reduction) and session weight assignment. Finally we compare our soft computing based approach of dimensionality reduction with the traditional approach of direct elimination of small sessions and low support count URLs. Our results show that fuzzy feature evaluation and dimensionality  reduction results in better performance and validity indices for the discovered clusters

    Lepton Flavor Violation and the Origin of the Seesaw Mechanism

    Get PDF
    The right--handed neutrino mass matrix that is central to the understanding of small neutrino masses via the seesaw mechanism can arise either (i) from renormalizable operators or (ii) from nonrenormalizable or super-renormalizable operators, depending on the symmetries and the Higgs content of the theory beyond the Standard Model. In this paper, we study lepton flavor violating (LFV) effects in the first class of seesaw models wherein the \nu_R Majorana masses arise from renormalizable Yukawa couplings involving a B-L = 2 Higgs field. We present detailed predictions for \tau -> \mu + \gamma and \mu -> e + \gamma branching ratios in these models taking the current neutrino oscillation data into account. Focusing on minimal supergravity models, we find that for a large range of MSSM parameters suggested by the relic abundance of neutralino dark matter and that is consistent with Higgs boson mass and other constraints, these radiative decays are in the range accessible to planned experiments. We compare these predictions with lepton flavor violation in the second class of models arising entirely from the Dirac Yukawa couplings. We study the dependence of the ratio r \equiv B(\mu -> e+\gamma)/B(\tau ->\mu +\gamma) on the MSSM parameters and show that measurement of r can provide crucial insight into the origin of the seesaw mechanism.Comment: 20 pages, Revtex, 7 figure

    Spial: analysis of subtype-specific features in multiple sequence alignments of proteins

    Get PDF
    Motivation: Spial (Specificity in alignments) is a tool for the comparative analysis of two alignments of evolutionarily related sequences that differ in their function, such as two receptor subtypes. It highlights functionally important residues that are either specific to one of the two alignments or conserved across both alignments. It permits visualization of this information in three complementary ways: by colour-coding alignment positions, by sequence logos and optionally by colour-coding the residues of a protein structure provided by the user. This can aid in the detection of residues that are involved in the subtype-specific interaction with a ligand, other proteins or nucleic acids. Spial may also be used to detect residues that may be post-translationally modified in one of the two sets of sequences. Availability: http://www.mrc-lmb.cam.ac.uk/genomes/spial/; supplementary information is available at http://www.mrc-lmb.cam.ac.uk/genomes/spial/help.html Contact: [email protected]

    Indications for an Extra Neutral Gauge Boson in Electroweak Precision Data

    Get PDF
    A new analysis of the hadronic peak cross section at LEP 1 implies a small amount of missing invisible width in Z decays, while the effective weak charge in atomic parity violation has been determined recently to 0.6% accuracy, indicating a significantly negative S parameter. As a consequence of these two deviations, the data are described well if the presence of an additional Z' boson, such as predicted in Grand Unified Theories, is assumed. Moreover, the data are now rich enough to study an arbitrary extra Z' boson and to determine its couplings in a model independent way. An excellent best fit to the data is obtained in this case, suggesting the possibility of a family non-universal Z' with properties similar to ones predicted in a class of superstring theories.Comment: 5 pages of ReVTeX, 2 figure

    Neutrino masses from higher than d=5 effective operators

    Get PDF
    We discuss the generation of small neutrino masses from effective operators higher than dimension five, which open new possibilities for low scale see-saw mechanisms. In order to forbid the radiative generation of neutrino mass by lower dimensional operators, extra fields are required, which are charged under a new symmetry. We discuss this mechanism in the framework of a two Higgs doublet model. We demonstrate that the tree level generation of neutrino mass from higher dimensional operators often leads to inverse see-saw scenarios in which small lepton number violating terms are naturally suppressed by the new physics scale. Furthermore, we systematically discuss tree level generalizations of the standard see-saw scenarios from higher dimensional operators. Finally, we point out that higher dimensional operators can also be generated at the loop level. In this case, we obtain the TeV scale as new physics scale even with order one couplings.Comment: 22 pages, 3 figures, 2 tables. Some references adde
    • …
    corecore