121 research outputs found

    Hypoxia-inducible Factor-1 Activation in Nonhypoxic Conditions: The Essential Role of Mitochondrial-derived Reactive Oxygen Species

    Get PDF
    Hypoxia-inducible factor-1 (HIF-1) is a key transcription factor for responses to low oxygen. Here we report that the generation of mitochondrial reactive oxygen species are essential for regulating HIF-1 in normal oxygen conditions in the vasculature

    Superoxide: a two-edged sword

    No full text
    Superoxide (O2-) is the compound obtained when oxygen is reduced by one electron. For a molecule with an unpaired electron, O2- is surprisingly inert, its chief reaction being a dismutation in which it reacts with itself to form H2O2 and oxygen. The involvement of O2- in biological systems was first revealed by the discovery in 1969 of superoxide dismutase, an enzyme that catalyzes the dismutation of O2-. Since then it has been found that biological systems produce a bewildering variety of reactive oxidants, all but a few arising ultimately from O2-. These oxidants include O2- itself, H2O2 and alkyl peroxides, hydroxyl radical and other reactive oxidizing radicals, oxidized halogens and halamines, singlet oxygen, and peroxynitrite. These various oxidants are able to damage molecules in their environment, and are therefore very dangerous. They are thought to participate in the pathogenesis of a number of common diseases, including among others malignancy, by their ability to mutate the genome, and atherosclerosis, by their capacity for oxidizing lipoproteins. Their properties are put to good use, however, in host defense, where they serve as microbicidal and parasiticidal agents, and in biological signalling, where their liberation in small quantities results in redox-mediated changes in the functions of enzymes and other protein

    Topological organization of NADPH-oxidase in haematopoietic stem cell membrane: Preliminary study by fluorescence near-field optical microscopy

    No full text
    The aim of this study was to characterize the local distribution and organization of the plasma membrane NADPH-oxidase (NOX) in human haematopoietic stem cell (HSC) by means of the fluorescence scanning near-field optical microscopy approach. The presence of NOX in haematopoietic stem cells is thought to have a functional role as O2 sensor and/or as low-level reactive oxygen species (ROS) producer to be used as redox messenger for controlling cell growth and differentiation. Given the harmful potential of ROS, a fine-tuning of NOX activity is needed. The high resolution imaging of haematopoietic stem cell membrane obtained in this study combined with the immunodetection of NOX indicates for this the occurrence of a cluster-organized structure. These membrane 'rafts'-like micro-compartments may constitute localized protein aggregates whereby the assembly/activation of the NOX components are functionally integrated with upstream factors constituting signal-transduction platforms. © 2008 The Authors
    corecore