13 research outputs found

    A calcium-sensing receptor mutation causing hypocalcemia disrupts a transmembrane salt bridge to activate β-arrestin-biased signaling

    Get PDF
    The calcium-sensing receptor (CaSR) is a G protein-coupled receptor (GPCR) that signals through Gq/11and Gi/oto stimulate cytosolic calcium (Ca2+i) and mitogen-activated protein kinase (MAPK) signaling to control extracellular calcium homeostasis. Studies of loss- and gain-of-functionCASRmutations, which cause familial hypocalciuric hypercalcemia type 1 (FHH1) and autosomal dominant hypocalcemia type 1 (ADH1), respectively, have revealed that the CaSR signals in a biased manner. Thus, some mutations associated with FHH1 lead to signaling predominantly through the MAPK pathway, whereas mutations associated with ADH1 preferentially enhance Ca2+iresponses. We report a previously unidentified ADH1-associated R680G CaSR mutation, which led to the identification of a CaSR structural motif that mediates biased signaling. Expressing CaSRR680Gin HEK 293 cells showed that this mutation increased MAPK signaling without altering Ca2+iresponses. Moreover, this gain of function in MAPK activity occurred independently of Gq/11and Gi/oand was mediated instead by a noncanonical pathway involving β-arrestin proteins. Homology modeling and mutagenesis studies showed that the R680G CaSR mutation selectively enhanced β-arrestin signaling by disrupting a salt bridge formed between Arg680and Glu767, which are located in CaSR transmembrane domain 3 and extracellular loop 2, respectively. Thus, our results demonstrate CaSR signaling through β-arrestin and the importance of the Arg680-Glu767salt bridge in mediating signaling bias

    Disorders of the calcium-sensing receptor and partner proteins: insights into the molecular basis of calcium homeostasis.

    No full text
    The extracellular calcium (Ca(2+) o)-sensing receptor (CaSR) is a family C G protein-coupled receptor, which detects alterations in Ca(2+) o concentrations and modulates parathyroid hormone secretion and urinary calcium excretion. The central role of the CaSR in Ca(2+) o homeostasis has been highlighted by the identification of mutations affecting the CASR gene on chromosome 3q21.1. Loss-of-function CASR mutations cause familial hypocalciuric hypercalcaemia (FHH), whereas gain-of-function mutations lead to autosomal dominant hypocalcaemia (ADH). However, CASR mutations are only detected in ≤70% of FHH and ADH cases, referred to as FHH type 1 and ADH type 1, respectively, and studies in other FHH and ADH kindreds have revealed these disorders to be genetically heterogeneous. Thus, loss- and gain-of-function mutations of the GNA11 gene on chromosome 19p13.3, which encodes the G-protein α-11 (Gα11) subunit, lead to FHH type 2 and ADH type 2, respectively; whilst loss-of-function mutations of AP2S1 on chromosome 19q13.3, which encodes the adaptor-related protein complex 2 sigma (AP2σ) subunit, cause FHH type 3. These studies have demonstrated Gα11 to be a key mediator of downstream CaSR signal transduction, and also revealed a role for AP2σ, which is involved in clathrin-mediated endocytosis, in CaSR signalling and trafficking. Moreover, FHH type 3 has been demonstrated to represent a more severe FHH variant that may lead to symptomatic hypercalcaemia, low bone mineral density and cognitive dysfunction. In addition, calcimimetic and calcilytic drugs, which are positive and negative CaSR allosteric modulators, respectively, have been shown to be of potential benefit for these FHH and ADH disorders

    Calcilytic NPSP795 increases plasma calcium and PTH in an autosomal dominant hypocalcemia type 1 mouse model

    Get PDF
    Calcilytics are calcium‐sensing receptor (CaSR) antagonists that reduce the sensitivity of the CaSR to extracellular calcium. Calcilytics have the potential to treat autosomal dominant hypocalcemia type 1 (ADH1), which is caused by germline gain‐of‐function CaSR mutations and leads to symptomatic hypocalcemia, inappropriately low PTH concentrations, and hypercalciuria. To date, only one calcilytic compound, NPSP795, has been evaluated in patients with ADH1: Doses of up to 30 mg per patient have been shown to increase PTH concentrations, but did not significantly alter ionized blood calcium concentrations. The aim of this study was to further investigate NPSP795 for the treatment of ADH1 by undertaking in vitro and in vivo studies involving Nuf mice, which have hypocalcemia in association with a gain‐of‐function CaSR mutation, Leu723Gln. Treatment of HEK293 cells stably expressing the mutant Nuf (Gln723) CaSR with 20nM NPSP795 decreased extracellular Ca2+‐mediated intracellular calcium and phosphorylated ERK responses. An in vivo dose‐ranging study was undertaken by administering a s.c. bolus of NPSP795 at doses ranging from 0 to 30 mg/kg to heterozygous (Casr +/Nuf ) and to homozygous (Casr Nuf/Nuf ) mice, and measuring plasma PTH responses at 30 min postdose. NPSP795 significantly increased plasma PTH concentrations in a dose‐dependent manner with the 30 mg/kg dose causing a maximal (≥10‐fold) rise in PTH. To determine whether NPSP795 can rectify the hypocalcemia of Casr +/Nuf and Casr Nuf/Nuf mice, a submaximal dose (25 mg/kg) was administered, and plasma adjusted‐calcium concentrations measured over a 6‐hour period. NPSP795 significantly increased plasma adjusted‐calcium in Casr +/Nuf mice from 1.87 ± 0.03 mmol/L to 2.16 ± 0.06 mmol/L, and in Casr Nuf/Nuf mice from 1.70 ± 0.03 mmol/L to 1.89 ± 0.05 mmol/L. Our findings show that NPSP795 elicits dose‐dependent increases in PTH and ameliorates the hypocalcemia in an ADH1 mouse model. Thus, calcilytics such as NPSP795 represent a potential targeted therapy for ADH1

    Mutations affecting G-protein subunit α11 in hypercalcemia and hypocalcemia.

    No full text
    BACKGROUND: Familial hypocalciuric hypercalcemia is a genetically heterogeneous disorder with three variants: types 1, 2, and 3. Type 1 is due to loss-of-function mutations of the calcium-sensing receptor, a guanine nucleotide-binding protein (G-protein)-coupled receptor that signals through the G-protein subunit α11 (Gα11). Type 3 is associated with adaptor-related protein complex 2, sigma 1 subunit (AP2S1) mutations, which result in altered calcium-sensing receptor endocytosis. We hypothesized that type 2 is due to mutations effecting Gα11 loss of function, since Gα11 is involved in calcium-sensing receptor signaling, and its gene (GNA11) and the type 2 locus are colocalized on chromosome 19p13.3. We also postulated that mutations effecting Gα11 gain of function, like the mutations effecting calcium-sensing receptor gain of function that cause autosomal dominant hypocalcemia type 1, may lead to hypocalcemia. METHODS: We performed GNA11 mutational analysis in a kindred with familial hypocalciuric hypercalcemia type 2 and in nine unrelated patients with familial hypocalciuric hypercalcemia who did not have mutations in the gene encoding the calcium-sensing receptor (CASR) or AP2S1. We also performed this analysis in eight unrelated patients with hypocalcemia who did not have CASR mutations. In addition, we studied the effects of GNA11 mutations on Gα11 protein structure and calcium-sensing receptor signaling in human embryonic kidney 293 (HEK293) cells. RESULTS: The kindred with familial hypocalciuric hypercalcemia type 2 had an in-frame deletion of a conserved Gα11 isoleucine (Ile200del), and one of the nine unrelated patients with familial hypocalciuric hypercalcemia had a missense GNA11 mutation (Leu135Gln). Missense GNA11 mutations (Arg181Gln and Phe341Leu) were detected in two unrelated patients with hypocalcemia; they were therefore identified as having autosomal dominant hypocalcemia type 2. All four GNA11 mutations predicted disrupted protein structures, and assessment on the basis of in vitro expression showed that familial hypocalciuric hypercalcemia type 2-associated mutations decreased the sensitivity of cells expressing calcium-sensing receptors to changes in extracellular calcium concentrations, whereas autosomal dominant hypocalcemia type 2-associated mutations increased cell sensitivity. CONCLUSIONS: Gα11 mutants with loss of function cause familial hypocalciuric hypercalcemia type 2, and Gα11 mutants with gain of function cause a clinical disorder designated as autosomal dominant hypocalcemia type 2. (Funded by the United Kingdom Medical Research Council and others.)

    Mutant mice with calcium-sensing receptor (CaSR) activation have hyperglycemia, that is rectified by calcilytic therapy

    No full text
    The calcium-sensing receptor (CaSR) is a family C G-protein-coupled receptor (GPCR) that plays a pivotal role in extracellular calcium homeostasis. The CaSR is also highly expressed in pancreatic islet α- and β-cells that secrete glucagon and insulin, respectively. To determine whether the CaSR may influence systemic glucose homeostasis, we characterized a mouse model with a germline gain-of-function CaSR mutation, Leu723Gln, referred to as Nuclear flecks (Nuf). Heterozygous- (CasrNuf/+) and homozygous-affected (CasrNuf/Nuf) mice were shown to have hypocalcemia in association with impaired glucose tolerance and insulin secretion. Oral administration of a CaSR antagonist compound, known as a calcilytic, rectified the glucose intolerance and hypoinsulinemia of CasrNuf/+ mice, and ameliorated glucose intolerance in CasrNuf/Nuf mice. Ex vivo studies showed CasrNuf/+ and CasrNuf/Nuf mice to have reduced pancreatic islet mass and β-cell proliferation. Electrophysiological analysis of isolated CasrNuf/Nuf islets showed CaSR activation to increase the basal electrical activity of β-cells independently of effects on the activity of the ATP-sensitive K+ (KATP) channel. CasrNuf/Nuf mice also had impaired glucose-mediated suppression of glucagon secretion, which was associated with increased numbers of α-cells and a higher α-cell proliferation rate. Moreover, CasrNuf/Nuf islet electrophysiology demonstrated an impairment of α-cell membrane depolarization in association with attenuated α-cell basal KATP channel activity. These studies indicate that the CaSR activation impairs glucose tolerance by a combination of α- and β-cell defects and also influences pancreatic islet mass. Moreover, our findings highlight a potential application of targeted CaSR compounds for modulating glucose metabolism

    Adaptor protein-2 sigma subunit mutations causing familial hypocalciuric hypercalcaemia type 3 (FHH3) demonstrate genotype-phenotype correlations, codon bias and dominant-negative effects.

    No full text
    The adaptor protein-2 sigma subunit (AP2σ2) is pivotal for clathrin-mediated endocytosis of plasma membrane constituents such as the calcium-sensing receptor (CaSR). Mutations of the AP2σ2 Arg15 residue result in familial hypocalciuric hypercalcaemia type 3 (FHH3), a disorder of extracellular calcium (Ca(2+) o) homeostasis. To elucidate the role of AP2σ2 in Ca(2+) o regulation, we investigated 65 FHH probands, without other FHH-associated mutations, for AP2σ2 mutations, characterized their functional consequences and investigated the genetic mechanisms leading to FHH3. AP2σ2 mutations were identified in 17 probands, comprising 5 Arg15Cys, 4 Arg15His and 8 Arg15Leu mutations. A genotype-phenotype correlation was observed with the Arg15Leu mutation leading to marked hypercalcaemia. FHH3 probands harboured additional phenotypes such as cognitive dysfunction. All three FHH3-causing AP2σ2 mutations impaired CaSR signal transduction in a dominant-negative manner. Mutational bias was observed at the AP2σ2 Arg15 residue as other predicted missense substitutions (Arg15Gly, Arg15Pro and Arg15Ser), which also caused CaSR loss-of-function, were not detected in FHH probands, and these mutations were found to reduce the numbers of CaSR-expressing cells. FHH3 probands had significantly greater serum calcium (sCa) and magnesium (sMg) concentrations with reduced urinary calcium to creatinine clearance ratios (CCCR) in comparison with FHH1 probands with CaSR mutations, and a calculated index of sCa × sMg/100 × CCCR, which was ≥ 5.0, had a diagnostic sensitivity and specificity of 83 and 86%, respectively, for FHH3. Thus, our studies demonstrate AP2σ2 mutations to result in a more severe FHH phenotype with genotype-phenotype correlations, and a dominant-negative mechanism of action with mutational bias at the Arg15 residue
    corecore