31 research outputs found
Inverse design and implementation of a wavelength demultiplexing grating coupler
Nanophotonics has emerged as a powerful tool for manipulating light on chips.
Almost all of today's devices, however, have been designed using slow and
ineffective brute-force search methods, leading in many cases to limited device
performance. In this article, we provide a complete demonstration of our
recently proposed inverse design technique, wherein the user specifies design
constraints in the form of target fields rather than a dielectric constant
profile, and in particular we use this method to demonstrate a new
demultiplexing grating. The novel grating, which has not been developed using
conventional techniques, accepts a vertical-incident Gaussian beam from a
free-space and separates O-band and C-band
light into separate waveguides. This inverse design concept
is simple and extendable to a broad class of highly compact devices including
frequency splitters, mode converters, and spatial mode multiplexers.Comment: 17 pages, 4 figures, 1 table. A supplementary section describing the
inverse-design algorithm in detail has been added, in addition to minor
corrections and updated reference
Fabrication and characterization of high quality factor silicon nitride nanobeam cavities
Si3N4 is an excellent material for applications of nanophotonics at visible
wavelengths due to its wide bandgap and moderately large refractive index (n
2.0). We present the fabrication and characterization of Si3N4
photonic crystal nanobeam cavities for coupling to diamond nanocrystals and
Nitrogen-Vacancy centers in a cavity QED system. Confocal
micro-photoluminescence analysis of the nanobeam cavities demonstrates quality
factors up to Q ~ 55,000, which is limited by the resolution of our
spectrometer. We also demonstrate coarse tuning of cavity resonances across the
600-700nm range by lithographically scaling the size of fabricated devices.
This is an order of magnitude improvement over previous SiNx cavities at this
important wavelength range
Plasmonic resonators for enhanced diamond NV- center single photon sources
We propose a novel source of non-classical light consisting of plasmonic
aperture with single-crystal diamond containing a single Nitrogen-Vacancy (NV)
color center. Theoretical calculations of optimal structures show that these
devices can simultaneously enhance optical pumping by a factor of 7,
spontaneous emission rates by Fp ~ 50 (Purcell factor), and offer collection
efficiencies up to 40%. These excitation and collection enhancements occur over
a broad range of wavelengths (~30nm), and are independently tunable with device
geometry, across the excitation (~530nm) and emission (~600-800nm) spectrum of
the NV center. Implementing this system with top-down techniques in bulk
diamond crystals will provide a scalable architecture for a myriad of diamond
NV center applications.Comment: 9 pages, 7 figure
Single Color Centers Implanted in Diamond Nanostructures
The development of materials processing techniques for optical diamond
nanostructures containing a single color center is an important problem in
quantum science and technology. In this work, we present the combination of ion
implantation and top-down diamond nanofabrication in two scenarios: diamond
nanopillars and diamond nanowires. The first device consists of a 'shallow'
implant (~20nm) to generate Nitrogen-vacancy (NV) color centers near the top
surface of the diamond crystal. Individual NV centers are then isolated
mechanically by dry etching a regular array of nanopillars in the diamond
surface. Photon anti-bunching measurements indicate that a high yield (>10%) of
the devices contain a single NV center. The second device demonstrates 'deep'
(~1\mu m) implantation of individual NV centers into pre-fabricated diamond
nanowire. The high single photon flux of the nanowire geometry, combined with
the low background fluorescence of the ultrapure diamond, allows us to sustain
strong photon anti-bunching even at high pump powers.Comment: 20 pages, 7 figure
Hybrid metal-dielectric nanocavity for enhanced light-matter interactions
Despite tremendous advances in the fundamentals and applications of cavity quantum electrodynamics (CQED), investigations in this field have primarily been limited to optical cavities composed of purely dielectric materials. Here, we demonstrate a hybrid metal-dielectric nanocavity design and realize it in the InAs/GaAs quantum photonics platform utilizing angled rotational metal evaporation. Key features of our nanometallic light-matter interface include: (i) order of magnitude reduction in mode volume compared to that of leading photonic crystal CQED systems; (ii) surface-emitting nanoscale cylindrical geometry and therefore good collection efficiency; and finally (iii) strong and broadband spontaneous emission rate enhancement (Purcell factor textasciitilde 8) of single photons. This light-matter interface may play an important role in quantum technologies
Hybrid Group IV Nanophotonic Structures Incorporating Diamond Silicon-Vacancy Color Centers
We demonstrate a new approach for engineering group IV semiconductor-based
quantum photonic structures containing negatively charged silicon-vacancy
(SiV) color centers in diamond as quantum emitters. Hybrid SiC/diamond
structures are realized by combining the growth of nanoand micro-diamonds on
silicon carbide (3C or 4H polytype) substrates, with the subsequent use of
these diamond crystals as a hard mask for pattern transfer. SiV color
centers are incorporated in diamond during its synthesis from molecular diamond
seeds (diamondoids), with no need for ionimplantation or annealing. We show
that the same growth technique can be used to grow a diamond layer controllably
doped with SiV on top of a high purity bulk diamond, in which we
subsequently fabricate nanopillar arrays containing high quality SiV
centers. Scanning confocal photoluminescence measurements reveal optically
active SiV lines both at room temperature and low temperature (5 K) from
all fabricated structures, and, in particular, very narrow linewidths and small
inhomogeneous broadening of SiV lines from all-diamond nano-pillar arrays,
which is a critical requirement for quantum computation. At low temperatures (5
K) we observe in these structures the signature typical of SiV centers in
bulk diamond, consistent with a double lambda. These results indicate that high
quality color centers can be incorporated into nanophotonic structures
synthetically with properties equivalent to those in bulk diamond, thereby
opening opportunities for applications in classical and quantum information
processing
Recommended from our members
Single-Color Centers Implanted in Diamond Nanostructures
The development of material-processing techniques that can be used to generate optical diamond nanostructures containing a single-color center is an important problem in quantum science and technology. In this work, we present the combination of ion implantation and top-down diamond nanofabrication in two scenarios: diamond nanopillars and diamond nanowires. The first device consists of a 'shallow' implant (similar to 20 nm) to generate nitrogen-vacancy (NV) color centers near the top surface of the diamond crystal prior to device fabrication. Individual NV centers are then mechanically isolated by etching a regular array of nanopillars in the diamond surface. Photon anti-bunching measurements indicate that a high yield (> 10%) of the devices contain a single NV center. The second device demonstrates 'deep' (similar to ) implantation of individual NV centers into diamond nanowires as a post-processing step. The high single-photon flux of the nanowire geometry, combined with the low background fluorescence of the ultrapure diamond, allowed us to observe sustained photon anti-bunching even at high pump powers.Engineering and Applied SciencesPhysic