6 research outputs found

    In vivo characterization of RNA cis-regulators in bacteria

    Get PDF
    Thesis advisor: Michelle M. MeyerBacteria commonly utilize cis-acting mRNA structures that bind specific molecules to control gene expression in response to changing cellular conditions. Examples of these ligand-sensing RNA cis-regulators are found throughout the bacterial world and include riboswitches, which interact with small metabolites to modulate the expression of fundamental metabolic genes, and the RNA structures that bind select ribosomal proteins to regulate entire ribosomal protein operons. Despite advances in both non-coding RNA discovery and validation, many predicted regulatory RNA motifs remain uncharacterized and little work has examined how RNA cis-regulators behave within their physiological context in the cell. Furthermore, it is not well understood how structured RNA regulators emerge and are maintained within bacterial genomes. In this thesis, I validate the biological function of a conserved RNA cis-regulator of ribosomal protein synthesis previously discovered by my group using bioinformatic approaches. I then investigate how bacteria respond to the loss of two different cis-regulatory RNA structures. Using Bacillus subtilis as a model organism, I introduce point mutations into the native loci of the ribosomal protein L20-interacting RNA cis-regulator and the tandem glycine riboswitch and assay the strains for fitness defects. I find that disrupting these regulatory RNA structures results in severe mutant phenotypes, especially under harsh conditions such as low temperatures or high glycine concentrations. Together, this body of work highlights the advantages of examining RNA behavior within its biological context and emphasizes the important role RNA cis-regulators play in overall organismal viability. My studies shed light on the selective pressures that impact structured RNA evolution in vivo and reinforce the potential of cis-regulatory RNAs as novel antimicrobial targets.Thesis (PhD) — Boston College, 2017.Submitted to: Boston College. Graduate School of Arts and Sciences.Discipline: Biology

    Fitness advantages conferred by the L20-interacting RNA cis-regulator of ribosomal protein synthesis in Bacillus subtilis

    No full text
    In many bacteria, ribosomal proteins autogenously repress their own expression by interacting with RNA structures typically located in the 5'-UTRs of their mRNA transcripts. This regulation is necessary to maintain a balance between ribosomal proteins and rRNA to ensure proper ribosome production. Despite advances in noncoding RNA discovery and validation of RNA-protein regulatory interactions, the selective pressures that govern the formation and maintenance of such RNA cis-regulators in the context of an organism remain largely undetermined. To examine the impact disruptions to this regulation have on bacterial fitness, we introduced point mutations that abolish ribosomal protein binding and regulation into the RNA structure that controls expression of ribosomal proteins L20 and L35 within the Bacillus subtilis genome. Our studies indicate that removing this regulation results in reduced log phase growth, improper rRNA maturation, and the accumulation of a kinetically trapped or misassembled ribosomal particle at low temperatures, suggesting defects in ribosome synthesis. Such work emphasizes the important role regulatory RNAs play in the stoichiometric production of ribosomal components for proper ribosome composition and overall organism viability and reinforces the potential of targeting ribosomal protein production and ribosome assembly with novel antimicrobials

    A novel type of colistin resistance genes selected from random sequence space

    No full text
    Antibiotic resistance is a rapidly increasing medical problem that severely limits the success of antibiotic treatments, and the identification of resistance determinants is key for surveillance and control of resistance dissemination. Horizontal transfer is the dominant mechanism for spread of resistance genes between bacteria but little is known about the original emergence of resistance genes. Here, we examined experimentally if random sequences can generate novel antibiotic resistance determinants de novo. By utilizing highly diverse expression libraries encoding random sequences to select for open reading frames that confer resistance to the last-resort antibiotic colistin in Escherichia coli, six de novo colistin resistance conferring peptides (Dcr) were identified. The peptides act via direct interactions with the sensor kinase PmrB (also termed BasS in E. coli), causing an activation of the PmrAB two-component system (TCS), modification of the lipid A domain of lipopolysaccharide and subsequent colistin resistance. This kinase-activation was extended to other TCS by generation of chimeric sensor kinases. Our results demonstrate that peptides with novel activities mediated via specific peptide-protein interactions in the transmembrane domain of a sensory transducer can be selected de novo, suggesting that the origination of such peptides from non-coding regions is conceivable. In addition, we identified a novel class of resistance determinants for a key antibiotic that is used as a last resort treatment for several significant pathogens. The high-level resistance provided at low expression levels, absence of significant growth defects and the functionality of Dcr peptides across different genera suggest that this class of peptides could potentially evolve as bona fide resistance determinants in natura

    Rescue of Escherichia coli auxotrophy by de novo small proteins

    No full text
    Increasing numbers of small proteins with diverse physiological roles are being identified and characterized in both prokaryotic and eukaryotic systems, but the origins and evolution of these proteins remain unclear. Recent genomic sequence analyses in several organisms suggest that new functions encoded by small open reading frames (sORFs) may emerge de novo from noncoding sequences. However, experimental data demonstrating if and how randomly generated sORFs can confer beneficial effects to cells are limited. Here, we show that by upregulating hisB expression, de novo small proteins (≤50 amino acids in length) selected from random sequence libraries can rescue Escherichia coli cells that lack the conditionally essential SerB enzyme. The recovered small proteins are hydrophobic and confer their rescue effect by binding to the 5′ end regulatory region of the his operon mRNA, suggesting that protein binding promotes structural rearrangements of the RNA that allow increased hisB expression. This study adds RNA regulatory elements as another interacting partner for de novo proteins isolated from random sequence libraries and provides further experimental evidence that small proteins with selective benefits can originate from the expression of nonfunctional sequences
    corecore