440 research outputs found

    Stationary Configurations Imply Shift Symmetry: No Bondi Accretion for Quintessence / k-Essence

    Full text link
    In this paper we show that, for general scalar fields, stationary configurations are possible for shift symmetric theories only. This symmetry with respect to constant translations in field space should either be manifest in the original field variables or reveal itself after an appropriate field redefinition. In particular this result implies that neither k-Essence nor Quintessence can have exact steady state / Bondi accretion onto Black Holes. We also discuss the role of field redefinitions in k-Essence theories. Here we study the transformation properties of observables and other variables in k-Essence and emphasize which of them are covariant under field redefinitions. Finally we find that stationary field configurations are necessarily linear in Killing time, provided that shift symmetry is realized in terms of these field variables.Comment: 8 page

    First-order framework and generalized global defect solutions

    Full text link
    This work deals with defect structures in models described by scalar fields. The investigations focus on generalized models, with the kinetic term modified to allow for a diversity of possibilities. We develop a new framework, in which we search for first-order differential equations which solve the equations of motion. The main issue concerns the introduction of a new function, which works like the superpotential usually considered in the standard situation. We investigate the problem in the general case, with an arbitrary number of fields, and we present several explicit examples in the case of a single real scalar field.Comment: 8 pages, 6 figures; version to appear in PL

    Hairy black holes in theories with massive gravitons

    Get PDF
    This is a brief survey of the known black hole solutions in the theories of ghost-free bigravity and massive gravity. Various black holes exist in these theories, in particular those supporting a massive graviton hair. However, it seems that solutions which could be astrophysically relevant are the same as in General Relativity, or very close to them. Therefore, the no-hair conjecture essentially applies, and so it would be hard to detect the graviton mass by observing black holes.Comment: References added. 20 pages, 3 figures, based on the talk given at the 7-th Aegean Summer School "Beyond Einstein's theory of gravity", September 201

    Imperfect Dark Energy from Kinetic Gravity Braiding

    Full text link
    We introduce a large class of scalar-tensor models with interactions containing the second derivatives of the scalar field but not leading to additional degrees of freedom. These models exhibit peculiar features, such as an essential mixing of scalar and tensor kinetic terms, which we have named kinetic braiding. This braiding causes the scalar stress tensor to deviate from the perfect-fluid form. Cosmology in these models possesses a rich phenomenology, even in the limit where the scalar is an exact Goldstone boson. Generically, there are attractor solutions where the scalar monitors the behaviour of external matter. Because of the kinetic braiding, the position of the attractor depends both on the form of the Lagrangian and on the external energy density. The late-time asymptotic of these cosmologies is a de Sitter state. The scalar can exhibit phantom behaviour and is able to cross the phantom divide with neither ghosts nor gradient instabilities. These features provide a new class of models for Dark Energy. As an example, we study in detail a simple one-parameter model. The possible observational signatures of this model include a sizeable Early Dark Energy and a specific equation of state evolving into the final de-Sitter state from a healthy phantom regime.Comment: 41 pages, 7 figures. References and some clarifying language added. This version was accepted for publication in JCA

    Non-Gaussian signatures of Tachyacoustic Cosmology

    Full text link
    I investigate non-Gaussian signatures in the context of tachyacoustic cosmology, that is, a noninflationary model with superluminal speed of sound. I calculate the full non-Gaussian amplitude A\mathcal{A}, its size fNLf_{\rm NL}, and corresponding shapes for a red-tilted spectrum of primordial scalar perturbations. Specifically, for cuscuton-like models I show that fNLO(1)f_{\rm NL}\sim {\cal O}(1), and the shape of its non-Gaussian amplitude peaks for both equilateral and local configurations, the latter being dominant. These results, albeit similar, are quantitatively distinct from the corresponding ones obtained by Magueijo {\it{et. al}} in the context of superluminal bimetric models.Comment: Some comments and references added. Matches the version published in JCA

    The four fixed points of scale invariant single field cosmological models

    Full text link
    We introduce a new set of flow parameters to describe the time dependence of the equation of state and the speed of sound in single field cosmological models. A scale invariant power spectrum is produced if these flow parameters satisfy specific dynamical equations. We analyze the flow of these parameters and find four types of fixed points that encompass all known single field models. Moreover, near each fixed point we uncover new models where the scale invariance of the power spectrum relies on having simultaneously time varying speed of sound and equation of state. We describe several distinctive new models and discuss constraints from strong coupling and superluminality.Comment: 24 pages, 6 figure

    General conditions for scale-invariant perturbations in an expanding universe

    Full text link
    We investigate the general properties of expanding cosmological models which generate scale-invariant curvature perturbations in the presence of a variable speed of sound. We show that in an expanding universe, generation of a super-Hubble, nearly scale-invariant spectrum of perturbations over a range of wavelengths consistent with observation requires at least one of three conditions: (1) accelerating expansion, (2) a speed of sound faster than the speed of light, or (3) super-Planckian energy density.Comment: 4 pages, RevTe

    Compact boson stars in K field theories

    Full text link
    We study a scalar field theory with a non-standard kinetic term minimally coupled to gravity. We establish the existence of compact boson stars, that is, static solutions with compact support of the full system with self-gravitation taken into account. Concretely, there exist two types of solutions, namely compact balls on the one hand, and compact shells on the other hand. The compact balls have a naked singularity at the center. The inner boundary of the compact shells is singular, as well, but it is, at the same time, a Killing horizon. These singular, compact shells therefore resemble black holes.Comment: Latex, 45 pages, 25 figures, some references and comments adde
    corecore