2,376 research outputs found

    Advanced Supersonic Technology concept AST-100 characteristics developed in a baseline-update study

    Get PDF
    The advanced supersonic technology configuration, AST-100, is described. The combination of wing thickness reduction, nacelle recontouring for minimum drag at cruise, and the use of the horizontal tail to produce lift during climb and cruise resulted in an increase in maximum lift-to-drag ratio. Lighter engines and lower fuel weight associated with this resizing result in a six percent reduction in takeoff gross weight. The AST-100 takeoff maximum effective perceived noise at the runway centerline and sideline measurement stations was 114.4 decibels. Since 1.5-decibels tradeoff is available from the approach noise, the required engine noise supression is 4.9 decibels. The AST-100 largest maximum overpressure would occur during transonic climb acceleration when the aircraft was at relatively low altitude. Calculated standard +8 C day range of the AST-100, with a 292 passenger payload, is 7348 km (3968 n.mi). Fuel price is the largest contributor to direct operating cost. However, if the AST-100 were flown subsonically (M = 0.9), direct operating costs would increase approximately 50 percent because of time related costs

    Characteristics of the advanced supersonic technology AST-105-1 configured for transpacific range with Pratt and Whitney aircraft variable stream control engines

    Get PDF
    Credence to systems weights and assurance that the noise study AST concept can be balanced were studied. Current titanium structural technology is assumed. A duct-burning turbofan variable stream control engine (VSCE), with noise reduction potential through use of a coannular nozzle was used. With 273 passengers, range of the AST-105-1 for a cruise Mach number of 2.62 is essentially transpacific. Lift-to-drag ratio is slightly higher than for previous AST configurations. It is trimmable over a center-of-gravity range of 4.7m (15.5 ft). Inherent high positive effective dihedral, typical of arrow-wing configurations in high-lift approach, would limit AST-105-1 to operating in crosswinds of 11.6 m/sec (22.4 kt), or less, with 75 percent of available lateral control. Normal power takeoff with cutback results in noise in excess of Federal Aviation Regulation Part 36 but less than for conventional procedure takeoff. Results of advanced (noncertificated) programmed throttle takeoff and approach procedures, not yet optimized, indicate that such can be an important additional method noise reduction

    Longitudinal Stability and Control Characteristics as Determined by the Rocket-model Technique for an Inline, Cruciform, Canard Missile Configuration with a Low-aspect-ratio Wing Having Trailing-edge Flap Controls for a Mach Number Range of 0.7 to 1.

    Get PDF
    Two full-scale models of an inline, cruciform, canard missile configuration having a low-aspect-ratio wing equipped with flap-type controls were flight tested in order to determine the missile's longitudinal aerodynamic characteristics. Stability derivatives and control and drag characteristics are presented for a range of Mach number from 0.7 to 1.8. Nonlinear lift and moment curves were noted for the angle - of-attack range of this test (0 deg to 8 deg). The aerodynamic-center location for angles of attack near 50 remained nearly constant for supersonic speeds at 13.5 percent of the mean aerodynamic chord; whereas for angles of attack near 0 deg, there was a rapid forward movement of the aerodynamic center as the Mach number increased. At a control deflection of 0 deg, the missile's response to the longitudinal control was in an essentially fixed space plane which was not coincident with the pitch plane as a result of the missile rolling. As a consequence, stability characteristics were determined from the resultant of pitch and yaw motions. The damping-in-pitch derivatives for the two angle -of-attack ranges of the test are in close agreement and varied only slightly with Mach number. The horn-balanced trailing-edge flap was effective in producing angle of attack over the Mach number range

    The ergonomics of command and control

    Get PDF
    Since its inception, just after the Second World War, ergonomics research has paid special attention to the issues surrounding human control of systems. Command and Control environments continue to represent a challenging domain for Ergonomics research. We take a broad view of Command and Control research, to include C2 (Command and Control), C3 (Command, Control and Communication), and C4 (Command, Control, Communication and Computers) as well as human supervisory control paradigms. This special issue of ERGONOMICS aims to present state-of-the-art research into models of team performance, evaluation of novel interaction technologies, case studies, methodologies and theoretical review papers. We are pleased to present papers that detail research on these topics in domains as diverse as the emergency services (e.g., police, fire, and ambulance), civilian applications (e.g., air traffic control, rail networks, and nuclear power) and military applications (e.g., land, sea and air) of command and control. While the domains of application are very diverse, many of the challenges they face share interesting similarities

    Synthesis of silver nanoparticles using a microfluidic impinging jet reactor

    Get PDF
    Synthesis of silver nanoparticles (NPs) in an impinging jet reactor (IJR) was investigated due to its unique properties of efficient mixing and lack of channel walls which avoid fouling. Silver NPs were formed at room temperature by reducing silver nitrate with sodium borohydride in the presence of sodium hydroxide. Two types of ligand were used to stabilize the NPs, trisodium citrate and polyvinyl alcohol (PVA). Weber number, the ratio between inertial forces and surface tension forces, is used to characterise flow in impinging jets. Flow regimes were investigated for Weber numbers in the range of 13-176. A liquid sheet/chain regime was identified at lower Weber numbers ( 90). Mixing time was found to be in the range 1-7 ms, using the Villermaux-Dushmann reaction system and Interaction by Exchange with the Mean mixing (IEM) model. Fastest mixing occurred at Weber number ca. 90. Using trisodium citrate as a ligand, NP size decreased from 7.9±5.8 nm to 3.4±1.4 nm when flow rate was increased from 32 ml/min to 72 ml/min using 0.5 mm jets; and from 6.4±3.4 nm to 5.1±4.6 nm when flow rate was increased from 20 ml/min to 32 ml/min using 0.25 mm jets. Using PVA as a ligand, NP size decreased from 5.4±1.6 nm to 4.2±1.1 nm using 0.5 mm jets and stayed relatively constant between 4.3±1 nm to 4.7±1.3 nm using 0.25 mm jets. In general the size of the NPs decreased when mixing was faster

    Some Effects of Roll Rate on the Longitudinal Stability Characteristics of a Cruciform Missile Configuration as Determined from Flight Test for a Mach Number Range of 1.1. to 1.8

    Get PDF
    A model of a cruciform missile configuration having a low-aspect-ratio wing equipped with flap-type controls was flight tested in order to determine stability and control characteristics while rolling at about 5 radians per second. Comparison is made with results from a similar model which rolled at a much lower rate. Results showed that, if the ratio of roll rate to natural circular frequency in pitch is not greater than about 0.3, the motion following a step disturbance in pitch essentially remains in a plane in space. The slope of normal- force coefficient against angle of attack C(sub N(sub alpha)) was the same as for the slowly rolling model at 0 degrees control deflection but C(sub N(sub alpha)) was much higher for the faster rolling model at about 5 degrees control deflection. The slope of pitching-moment coefficient against angle of attack C(sub m(sub alpha)) as determined from the model period of oscillation was the same for both models at 0 degrees control deflection but was lower for the faster rolling model at about 5 degrees control deflection. Damping data for the faster rolling model showed considerably more scatter than for the slowly rolling model

    Instability of the massive Klein-Gordon field on the Kerr spacetime

    Full text link
    We investigate the instability of the massive scalar field in the vicinity of a rotating black hole. The instability arises from amplification caused by the classical superradiance effect. The instability affects bound states: solutions to the massive Klein-Gordon equation which tend to zero at infinity. We calculate the spectrum of bound state frequencies on the Kerr background using a continued fraction method, adapted from studies of quasinormal modes. We demonstrate that the instability is most significant for the l=1l = 1, m=1m = 1 state, for Mμ≲0.5M \mu \lesssim 0.5. For a fast rotating hole (a=0.99a = 0.99) we find a maximum growth rate of τ−1≈1.5×10−7(GM/c3)−1\tau^{-1} \approx 1.5 \times 10^{-7} (GM/c^3)^{-1}, at Mμ≈0.42M \mu \approx 0.42. The physical implications are discussed.Comment: Added references. 27 pages, 7 figure
    • …
    corecore