10 research outputs found

    Boron Phosphate and Aluminum Phosphate Aerogels

    Get PDF
    Anhydrous sol-gel condensation of triethyl phosphate [(CH3CH2O)3PO] with boron trichloride (BCL3 ) or triethyl aluminum [(CH3CH2 ) 3A1] in organic solvents, led to formation of metallophosphate gels. The pore fluid of the gels was removed under supercritical conditions in a pressurized vessel to form aerogels. The aerogels were then calcined at progressively higher temperatures to produce high surface area phosphates. Since the initial gel reagent mixtures contained several NMR active nuclei, the condensation chemistry prior to the gel point was monitored by solution nB NMR. The surface areas, distribution of pore sizes, and total pore volumes of the aerogel products were determined using nitrogen gas physisorption methods

    Genetic studies of African populations: an overview on disease susceptibility and response to vaccines and therapeutics.

    Get PDF
    Africa is the ultimate source of modern humans and as such harbors more genetic variation than any other continent. For this reason, studies of the patterns of genetic variation in African populations are crucial to understanding how genes affect phenotypic variation, including disease predisposition. In addition, the patterns of extant genetic variation in Africa are important for understanding how genetic variation affects infectious diseases that are a major problem in Africa, such as malaria, tuberculosis, schistosomiasis, and HIV/AIDS. Therefore, elucidating the role that genetic susceptibility to infectious diseases plays is critical to improving the health of people in Africa. It is also of note that recent and ongoing social and cultural changes in sub-Saharan Africa have increased the prevalence of non-communicable diseases that will also require genetic analyses to improve disease prevention and treatment. In this review we give special attention to many of the past and ongoing studies, emphasizing those in Sub-Saharan Africans that address the role of genetic variation in human disease

    Diabetes and CVD Risk: Special Considerations in African Americans Related to Care

    No full text

    Organic Acid and Solvent Production

    No full text

    Kolon und Rektum

    No full text

    Description and performance of track and primary-vertex reconstruction with the CMS tracker

    No full text

    Description and performance of track and primary-vertex reconstruction with the CMS tracker

    No full text
    A description is provided of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices. Despite the very hostile environment at the LHC, the performance obtained with these algorithms is found to be excellent. For tbar t events under typical 2011 pileup conditions, the average track-reconstruction efficiency for promptly-produced charged particles with transverse momenta of p(T) > 0.9GeV is 94% for pseudorapidities of |η| < 0.9 and 85% for 0.9 < |η| < 2.5. The inefficiency is caused mainly by hadrons that undergo nuclear interactions in the tracker material. For isolated muons, the corresponding efficiencies are essentially 100%. For isolated muons of p(T) = 100GeV emitted at |η| < 1.4, the resolutions are approximately 2.8% in p(T), and respectively, 10μm and 30μm in the transverse and longitudinal impact parameters. The position resolution achieved for reconstructed primary vertices that correspond to interesting pp collisions is 10–12μm in each of the three spatial dimensions. The tracking and vertexing software is fast and flexible, and easily adaptable to other functions, such as fast tracking for the trigger, or dedicated tracking for electrons that takes into account bremsstrahlung
    corecore