12 research outputs found

    Integrated Environmental Modelling Framework for Cumulative Effects Assessment

    Get PDF
    Global warming and population growth have resulted in an increase in the intensity of natural and anthropogenic stressors. Investigating the complex nature of environmental problems requires the integration of different environmental processes across major components of the environment, including water, climate, ecology, air, and land. Cumulative effects assessment (CEA) not only includes analyzing and modeling environmental changes, but also supports planning alternatives that promote environmental monitoring and management. Disjointed and narrowly focused environmental management approaches have proved dissatisfactory. The adoption of integrated modelling approaches has sparked interests in the development of frameworks which may be used to investigate the processes of individual environmental component and the ways they interact with each other. Integrated modelling systems and frameworks are often the only way to take into account the important environmental processes and interactions, relevant spatial and temporal scales, and feedback mechanisms of complex systems for CEA. This book examines the ways in which interactions and relationships between environmental components are understood, paying special attention to climate, land, water quantity and quality, and both anthropogenic and natural stressors. It reviews modelling approaches for each component and reviews existing integrated modelling systems for CEA. Finally, it proposes an integrated modelling framework and provides perspectives on future research avenues for cumulative effects assessment

    A Modeling Framework to Investigate the Impact of Climate and Land-Use/Cover Change on Hydrological Processes in the Elbow River Watershed in Southern Alberta

    No full text
    Complex dynamical and physical interactions exist between climate, land use/cover (LULC), and hydrology. In fact, each of these systems is considered complex because they possess the following characteristics. They consist of a large number of components that interact in a non-linear way. They interchange information with their surroundings and constantly modify their self-organized structure. They are far-from-equilibrium and display instability, sensitivity to initial conditions, sudden changes, and a behavior that cannot be captured by simple models. Understanding how hydrological processes respond to climate and LULC change requires knowledge about how these complex systems interact in the present and how they might in the future. The objective of this research is to understand the responses of hydrological processes to climate and LULC change in the Elbow River watershed using an integrated modeling framework that can address the complexity of these interrelated systems. To achieve this goal, the physically-based, distributed MIKE SHE/MIKE 11 model was coupled with a LULC cellular automata to simulate hydrological processes up to the year 2070 under five GCM-scenarios (NCARPCM-A1B, CGCM2-B2(3), HadCM3-A2(a), CCSRNIES-A1FI, and HadCM3-B2(b)). Results reveal that most scenarios generate an increase in overland flow, baseflow, and evapotranspiration in the winter/spring, and a decrease in the summer/fall. The highest increase in streamflow occurs in mid-late spring due to an increase in snowmelt and rain-on-snow events that may enhance the risk of flooding. In addition, LULC change substantially modifies the river regime in the east sub-catchment, where urbanization occurs. The separated impacts of climate and LULC change on streamflow are positively correlated in winter and spring, which intensifies their influence and leads to a rise in streamflow, which in turn increases the vulnerability of the watershed to floods, particularly in spring. Flow duration curves indicate that LULC change has a greater contribution to peak flows than climate change in both the 2020s and 2050s. The integrated modeling framework used in this research is a powerful analytical tool that can help scientists and decision makers for the planning of sustainable water resources and infrastructure management

    Spatial and Temporal Shifts in Historic and Future Temperature and Precipitation Patterns Related to Snow Accumulation and Melt Regimes in Alberta, Canada

    No full text
    Shifts in winter temperature and precipitation patterns can profoundly affect snow accumulation and melt regimes. These shifts have varying impacts on local to large-scale hydro-ecological systems and freshwater distribution, especially in cold regions with high hydroclimatic heterogeneity. We evaluate winter climate changes in the six ecozones (Mountains, Foothills, Prairie, Parkland, Boreal, and Taiga) in Alberta, Canada, and identify regions of elevated susceptibility to change. Evaluation of historic trends and future changes in winter climate use high-resolution (~10 km) gridded data for 1950–2017 and projections for the 2050s (2041–2070) and 2080s (2071–2100) under medium (RCP 4.5) and high (RCP 8.5) emissions scenarios. Results indicate continued declines in winter duration and earlier onset of spring above-freezing temperatures from historic through future periods, with greater changes in Prairie and Mountain ecozones, and extremely short or nonexistent winter durations in future climatologies. Decreases in November–April precipitation and a shift from snow to rain dominate the historic period. Future scenarios suggest winter precipitation increases are expected to predominantly fall as rain. Additionally, shifts in precipitation distributions are likely to lead to historically-rare, high-precipitation extreme events becoming more common. This study increases our understanding of historic trends and projected future change effects on winter snowpack-related climate and can be used inform adaptive water resource management strategies

    Modelling Interactions between Land Use, Climate, and Hydrology along with Stakeholders’ Negotiation for Water Resources Management

    No full text
    This paper describes the main functionalities of an integrated framework to model the interactions between land use, climate, and hydrology along with stakeholders’ negotiation. Its novelty lies in the combination of individual-based and spatially distributed models within the Socio-Hydrology paradigm to capture the complexity and uncertainty inherent to these systems. It encompasses a land-use/land-cover cellular automata model, an agent-based model used for automated stakeholders’ negotiation, and the hydrological MIKE SHE/MIKE 11 model, which are linked and can be accessed through a web-based interface. It enables users to run simulations to explore a wide range of scenarios related to land development and water resource management while considering the reciprocal influence of human and natural systems. This framework was developed with the involvement of key stakeholders from the initial design stage to the final demonstration and validation

    An Integrated Modelling System to Predict Hydrological Processes under Climate and Land-Use/Cover Change Scenarios

    No full text
    This study proposes an integrated modeling system consisting of the physically-based MIKE SHE/MIKE 11 model, a cellular automata model, and general circulation models (GCMs) scenarios to investigate the independent and combined effects of future climate and land-use/land-cover (LULC) changes on the hydrology of a river system. The integrated modelling system is applied to the Elbow River watershed in southern Alberta, Canada in conjunction with extreme GCM scenarios and two LULC change scenarios in the 2020s and 2050s. Results reveal that LULC change substantially modifies the river flow regime in the east sub-catchment, where rapid urbanization is occurring. It is also shown that the change in LULC causes an increase in peak flows in both the 2020s and 2050s. The impacts of climate and LULC change on streamflow are positively correlated in winter and spring, which intensifies their influence and leads to a significant rise in streamflow, and, subsequently, increases the vulnerability of the watershed to spring floods. This study highlights the importance of using an integrated modeling approach to investigate both the independent and combined impacts of climate and LULC changes on the future of hydrology to improve our understanding of how watersheds will respond to climate and LULC changes

    Integrated Environmental Modelling Framework for Cumulative Effects Assessment

    Get PDF
    Global warming and population growth have resulted in an increase in the intensity of natural and anthropogenic stressors. Investigating the complex nature of environmental problems requires the integration of different environmental processes across major components of the environment, including water, climate, ecology, air, and land. Cumulative effects assessment (CEA) not only includes analyzing and modeling environmental changes, but also supports planning alternatives that promote environmental monitoring and management. Disjointed and narrowly focused environmental management approaches have proved dissatisfactory. The adoption of integrated modelling approaches has sparked interests in the development of frameworks which may be used to investigate the processes of individual environmental component and the ways they interact with each other. Integrated modelling systems and frameworks are often the only way to take into account the important environmental processes and interactions, relevant spatial and temporal scales, and feedback mechanisms of complex systems for CEA. This book examines the ways in which interactions and relationships between environmental components are understood, paying special attention to climate, land, water quantity and quality, and both anthropogenic and natural stressors. It reviews modelling approaches for each component and reviews existing integrated modelling systems for CEA. Finally, it proposes an integrated modelling framework and provides perspectives on future research avenues for cumulative effects assessment

    Development of Land-Use/Land-Cover Maps Using Landsat-8 and MODIS Data, and Their Integration for Hydro-Ecological Applications

    No full text
    The Athabasca River watershed plays a dominant role in both the economy and the environment in Alberta, Canada. Natural and anthropogenic factors rapidly changed the landscape of the watershed in recent decades. The dynamic of such changes in the landscape characteristics of the watershed calls for a comprehensive and up-to-date land-use and land-cover (LULC) map, which could serve different user-groups and purposes. The aim of the study herein was to delineate a 2016 LULC map of the Athabasca River watershed using Landsat-8 Operational Land Imager (OLI) images, Moderate Resolution Imaging Spectroradiometer (MODIS)-derived enhanced vegetation index (EVI) images, and other ancillary data. In order to achieve this, firstly, a preliminary LULC map was developed through applying the iterative self-organizing data analysis (ISODATA) clustering technique on 24 scenes of Landsat-8 OLI. Secondly, a Terra MODIS-derived 250-m 16-day composite of 30 EVI images over the growing season was employed to enhance the vegetation classes. Thirdly, several geospatial ancillary datasets were used in the post-classification improvement processes to generate a final 2016 LULC map of the study area, exhibiting 14 LULC classes. Fourthly, an accuracy assessment was carried out to ensure the reliability of the generated final LULC classes. The results, with an overall accuracy and Cohen’s kappa of 74.95% and 68.34%, respectively, showed that coniferous forest (47.30%), deciduous forest (16.76%), mixed forest (6.65%), agriculture (6.37%), water (6.10%), and developed land (3.78%) were the major LULC classes of the watershed. Fifthly, to support the data needs of scientists across various disciplines, data fusion techniques into the LULC map were performed using the Alberta merged wetland inventory 2017 data. The results generated two useful maps applicable for hydro-ecological applications. Such maps depicted two specific categories including different types of burned (approximately 6%) and wetland (approximately 30%) classes. In fact, these maps could serve as important decision support tools for policy-makers and local regulatory authorities in the sustainable management of the Athabasca River watershed

    Wavelet-based spatiotemporal analyses of climate and vegetation for the Athabasca river basin in Canada

    No full text
    Monitoring spatiotemporal changes in climate and vegetation coverage are crucial for various purposes, including water, hazard, and agricultural management. Climate has an impact on vegetation, however, studying their relationship is challenging. We implemented the Least-Squares Wavelet (LSWAVE) software for investigating trend, coherency, and time lag estimation between climate and vegetation time series. We utilized Normalized Difference Vegetation Index (NDVI) time series provided by the Terra satellite and hybrid climate time series. We found that the seasonal cycles of climate and NDVI are coherent with time delay. For the entire Athabasca River Basin (ARB), the most coherent component was the annual cycle with 84% annual coherency between vegetation and temperature and 46% between vegetation and precipitation. The annual cycles of temperature and precipitation led the ones in vegetation by about two and three weeks, respectively. Relatively lower coherency was observed in the mountainous region (upper ARB) and higher coherency in the middle ARB. From the cross-spectrograms, a clear time delay pattern was observed between the annual cycles of climate and vegetation since 2000 but not for other high-frequency seasonal cycles. The results also highlighted the advantages of LSWAVE algorithms over traditional algorithms, such as linear regression and correlation. Furthermore, we analyzed the annual land use and land cover data provided by the Terra and Aqua satellites and discussed their linkage with the climate and NDVI results
    corecore