979 research outputs found

    Index

    Get PDF

    Index

    Get PDF

    Paleotectonic control of reservoir facies

    Get PDF
    The basement structural fabric of the Paradox basin affected sedimentary facies throughout Phanerozoic time. Continental-scale basement wrench-fault zones were rejuvenated repeatedly throughout the Paleozoic. The Paradox pull-apart evaporite basin was formed along the northwest-southeast-trending Paradox-Wichita lineament in Middle Pennsylvanian time, facilitated by basement faults of the northeast-southwest-trending Colorado lineament. Structurally controlled shoaling conditions, formed by reactivation of basement faults, fostered marine sandstone reservoirs in Late Devonian time, crinoidal buildups in the Early Mississippian, and phylloid-algae mounds in Middle Pennsylvanian time. Apparently similar basement wrench-fault zones are present in Kansas. The midcontinent rift system is a north-northeast-south-southwest-trending fault zone that was reactivated during the Paleozoic. Northwest-southeast-trending faults along the Central Kansas-Bourbon arch complex appear to have offset structures of the midcontinent rift. Both trends are interpreted to be continental-scale conjugate wrench-fault zones with sinistral displacement along the midcontinent rift and dextral displacement along the Central Kansas-Bourbon arch complex. Stratigraphic relationships suggest repeated reactivation before Pennsylvanian uplift and erosion along the major structures. In both regions major structural lineaments are associated with smaller-scale fault patterns. Reactivation of these structures through time created paleotectonic trapping conditions at several stratigraphic intervals. Evidence is accumulating in Kansas that tectonically controlled paleotopography and paleobathymetry are major predictable factors in reservoir localization. Recognition of reactivated basement structural fabrics can provide* significant constraints on reservoir characterization and modeling

    Paleotectonic control of reservoir facies

    Get PDF
    The basement structural fabric of the Paradox basin affected sedimentary facies throughout Phanerozoic time. Continental-scale basement wrench-fault zones were rejuvenated repeatedly throughout the Paleozoic. The Paradox pull-apart evaporite basin was formed along the northwest-southeast-trending Paradox-Wichita lineament in Middle Pennsylvanian time, facilitated by basement faults of the northeast-southwest-trending Colorado lineament. Structurally controlled shoaling conditions, formed by reactivation of basement faults, fostered marine sandstone reservoirs in Late Devonian time, crinoidal buildups in the Early Mississippian, and phylloid-algae mounds in Middle Pennsylvanian time. Apparently similar basement wrench-fault zones are present in Kansas. The midcontinent rift system is a north-northeast-south-southwest-trending fault zone that was reactivated during the Paleozoic. Northwest-southeast-trending faults along the Central Kansas-Bourbon arch complex appear to have offset structures of the midcontinent rift. Both trends are interpreted to be continental-scale conjugate wrench-fault zones with sinistral displacement along the midcontinent rift and dextral displacement along the Central Kansas-Bourbon arch complex. Stratigraphic relationships suggest repeated reactivation before Pennsylvanian uplift and erosion along the major structures. In both regions major structural lineaments are associated with smaller-scale fault patterns. Reactivation of these structures through time created paleotectonic trapping conditions at several stratigraphic intervals. Evidence is accumulating in Kansas that tectonically controlled paleotopography and paleobathymetry are major predictable factors in reservoir localization. Recognition of reactivated basement structural fabrics can provide* significant constraints on reservoir characterization and modeling

    Nuclear gas dynamics in Arp 220 - sub-kiloparsec scale atomic hydrogen disks

    Full text link
    We present new, high angular resolution (~0.22") MERLIN observations of neutral hydrogen (HI) absorption and 21-cm radio continuum emission across the central ~900 parsecs of the ultraluminous infrared galaxy, Arp220. Spatially resolved HI absorption is detected against the morphologically complex and extended 21-cm radio continuum emission, consistent with two counterrotating disks of neutral hydrogen, with a small bridge of gas connecting the two. We propose a merger model in which the two nuclei represent the galaxy cores which have survived the initial encounter and are now in the final stages of merging, similar to conclusions drawn from previous CO studies (Sakamoto, Scoville & Yun 1999). However, we suggest that instead of being coplanar with the main CO disk (in which the eastern nucleus is embedded), the western nucleus lies above it and, as suggested by bridge of HI connecting the two nuclei, will soon complete its final merger with the main disk. We suggest that the collection of radio supernovae (RSN) detected in VLBA studies in the more compact western nucleus represent the second burst of star formation associated with this final merger stage and that free-free absorption due to ionised gas in the bulge-like component can account for the observed RSN distribution. (Abridged)Comment: 26 pages including 8 figures and 1 table; accepted for publication in Ap

    Redefinition of the Upper Pennsylvanian Virgilian Series in Kansas

    Get PDF
    The Virgilian Series was defined nearly 60 years ago to include those rocks lying between the Missourian Series and the base of the Permian System. In the type area in east-central Kansas, the Virgilian Series comprised the Douglas, Shawnee, and Wabaunsee Groups. In Kansas, the upper boundary of the Virgilian (Pennsylvanian-Permian boundary) was placed at the top of the Brownville Limestone Member on the basis of what was then believed to be a regional disconformity rather than on paleontological criteria. Recent advances in fusulinid and conodont biostratigraphy provide tentative criteria upon which to effect a change in the placement of the Virgilian-Permian boundary. It is now generally agreed that the base of the Permian System is approximated by the first occurrence of Pseudoschwagerina, an inflated schwagerinid. Furthermore, the Subcommission on Permian Stratigraphy has informally agreed that the base of the Permian should coincide with the first occurrence of the conodont species Streptognathodus barskovi. Inflated schwagerinids (Paraschwagerina kansasensis) first occur along with evolutionary changes in the Conodonta in the Neva Limestone of the Council Grove Group. Consequently, the Virgilian Series is herein redefined to include rocks present between the top of the Missourian Series and the base of the Neva Limestone. To increase compatibility between chronostratigraphic and lithostratigraphic nomenclature, the following changes are made: I) the Admire Group is redefined to include rocks between the base of the Onaga Shale and the base of the Neva Limestone; 2) the Admire is reassigned to the upper Virgilian Series; 3) the Neva Limestone is elevated to formational status; 4) the Grenola Limestone is redefined to include strata between the top of the Roca Shale and the base of the Neva Limestone; 5) the overlying Council Grove Group is redefined to include strata lying between the base of the Neva Limestone and the base of the Chase Group; and 6) regionally the base of the emended Council Grove Group marks the base of the Permian System. The emended Council Grove Group is lower Wolfcampian in age and is time equivalent with the Neal Ranch Formation of the west Texas type Wolfcampian

    Proposed Repositioning of the Pennsylvanian-Permian Boundary in Kansas

    Get PDF
    The Pennsylvanian-Permian boundary in North America has not corresponded with the Carboniferous-Permian boundary in Europe for decades. To facilitate global correlations, an attempt is here made to suggest a possible solution to the dilemma by making the best possible correlation of the Kansas stratigraphic section with the recently proposed boundary location in the Russian type section. The Virgilian Stage (Upper Pennsylvanian) was defined nearly 60 years ago to include those rocks lying between the Missourian Stage and the base of the Permian System. In the type area in east-central Kansas, the Virgilian Stage comprised the Douglas, Shawnee, and Wabaunsee Groups. In Kansas, the Pennsylvanian-Permian boundary was placed eventually at the top of the Brownville Limestone Member on the basis of what was then believed to be a regional disconformity rather than on paleontological criteria. Recent advances in fusulinid and conodont biostratigraphy provide tentative criteria upon which to suggest a change in the placement of the Virgilian-Permian boundary. A Russian delegation formally proposed at the International Congress on the Permian System of the World held in Perm, U.S.S.R. (Russia) in August 1991 that the base of the Permian System be established at the base of the Asselian Stage at the approximate stratigraphic position of the first inflated fusulinids (Sphaeroschwagerina vulgaris-S. fusiformis). Inflated schwagerinids (Paraschwagerina kansasensis) first occur, along with evolutionary changes in conodonts, in the Neva Limestone Member of the Grenola Limestone (Council Grove Group). Thus, if we assume that inflated schwagerinids arose globally at about the same time, the Neva Limestone Member is the oldest definitive Permian in the United States midcontinent, as related to the newly proposed boundary in Russia and Kazakhstan. Consequently, we propose that the Virgilian Stage in Kansas include rocks between the top of the Missourian Stage and the base of the Neva Limestone Member

    Redefinition of the Upper Pennsylvanian Virgilian Series in Kansas

    Get PDF
    The Virgilian Series was defined nearly 60 years ago to include those rocks lying between the Missourian Series and the base of the Permian System. In the type area in east-central Kansas, the Virgilian Series comprised the Douglas, Shawnee, and Wabaunsee Groups. In Kansas, the upper boundary of the Virgilian (Pennsylvanian-Permian boundary) was placed at the top of the Brownville Limestone Member on the basis of what was then believed to be a regional disconformity rather than on paleontological criteria. Recent advances in fusulinid and conodont biostratigraphy provide tentative criteria upon which to effect a change in the placement of the Virgilian-Permian boundary. It is now generally agreed that the base of the Permian System is approximated by the first occurrence of Pseudoschwagerina, an inflated schwagerinid. Furthermore, the Subcommission on Permian Stratigraphy has informally agreed that the base of the Permian should coincide with the first occurrence of the conodont species Streptognathodus barskovi. Inflated schwagerinids (Paraschwagerina kansasensis) first occur along with evolutionary changes in the Conodonta in the Neva Limestone of the Council Grove Group. Consequently, the Virgilian Series is herein redefined to include rocks present between the top of the Missourian Series and the base of the Neva Limestone. To increase compatibility between chronostratigraphic and lithostratigraphic nomenclature, the following changes are made: I) the Admire Group is redefined to include rocks between the base of the Onaga Shale and the base of the Neva Limestone; 2) the Admire is reassigned to the upper Virgilian Series; 3) the Neva Limestone is elevated to formational status; 4) the Grenola Limestone is redefined to include strata between the top of the Roca Shale and the base of the Neva Limestone; 5) the overlying Council Grove Group is redefined to include strata lying between the base of the Neva Limestone and the base of the Chase Group; and 6) regionally the base of the emended Council Grove Group marks the base of the Permian System. The emended Council Grove Group is lower Wolfcampian in age and is time equivalent with the Neal Ranch Formation of the west Texas type Wolfcampian

    Proposed Repositioning of the Pennsylvanian-Permian Boundary in Kansas

    Get PDF
    The Pennsylvanian-Permian boundary in North America has not corresponded with the Carboniferous-Permian boundary in Europe for decades. To facilitate global correlations, an attempt is here made to suggest a possible solution to the dilemma by making the best possible correlation of the Kansas stratigraphic section with the recently proposed boundary location in the Russian type section. The Virgilian Stage (Upper Pennsylvanian) was defined nearly 60 years ago to include those rocks lying between the Missourian Stage and the base of the Permian System. In the type area in east-central Kansas, the Virgilian Stage comprised the Douglas, Shawnee, and Wabaunsee Groups. In Kansas, the Pennsylvanian-Permian boundary was placed eventually at the top of the Brownville Limestone Member on the basis of what was then believed to be a regional disconformity rather than on paleontological criteria. Recent advances in fusulinid and conodont biostratigraphy provide tentative criteria upon which to suggest a change in the placement of the Virgilian-Permian boundary. A Russian delegation formally proposed at the International Congress on the Permian System of the World held in Perm, U.S.S.R. (Russia) in August 1991 that the base of the Permian System be established at the base of the Asselian Stage at the approximate stratigraphic position of the first inflated fusulinids (Sphaeroschwagerina vulgaris-S. fusiformis). Inflated schwagerinids (Paraschwagerina kansasensis) first occur, along with evolutionary changes in conodonts, in the Neva Limestone Member of the Grenola Limestone (Council Grove Group). Thus, if we assume that inflated schwagerinids arose globally at about the same time, the Neva Limestone Member is the oldest definitive Permian in the United States midcontinent, as related to the newly proposed boundary in Russia and Kazakhstan. Consequently, we propose that the Virgilian Stage in Kansas include rocks between the top of the Missourian Stage and the base of the Neva Limestone Member

    A Compact Extreme Scattering Event Cloud Towards AO 0235+164

    Get PDF
    We present observations of a rare, rapid, high amplitude Extreme Scattering Event toward the compact BL-Lac AO 0235+164 at 6.65 GHz. The ESE cloud is compact; we estimate its diameter between 0.09 and 0.9 AU, and is at a distance of less than 3.6 kpc. Limits on the angular extent of the ESE cloud imply a minimum cloud electron density of ~ 4 x 10^3 cm^-3. Based on the amplitude and timescale of the ESE observed here, we suggest that at least one of the transients reported by Bower et al. (2007) may be attributed to ESEs.Comment: 11 pages, 2 figure
    • …
    corecore