352 research outputs found

    The hemline and the economy: is there any match?

    Get PDF
    Urban legend has it that the hemline is correlated with the economy. In times of decline, the hemline moves towards the floor (decreases), and when the economy is booming, skirts get shorter and the hemline increases. We collected monthly data on the hemline, for 1921-2009, and evaluate these against the NBER chronology of the economic cycle. The main finding is that the urban legend holds true but with a time lag of about three years. Hence, the current economic crisis predicts ankle length shirts around 2011 and 2012.

    The hemline and the economy: is there any match?

    Get PDF
    Urban legend has it that the hemline is correlated with the economy. In times of decline, the hemline moves towards the floor (decreases), and when the economy is booming, skirts get shorter and the hemline increases. We collected monthly data on the hemline, for 1921-2009, and evaluate these against the NBER chronology of the economic cycle. The main finding is that the urban legend holds true but with a time lag of about three years. Hence, the current economic crisis predicts ankle length shirts around 2011 and 2012

    Impact of tumor size and tracer uptake heterogeneity in (18)F-FDG PET and CT non-small cell lung cancer tumor delineation.: 18F-FDG PET and CT tumor delineation in NSCLC

    Get PDF
    International audienceUNLABELLED: The objectives of this study were to investigate the relationship between CT- and (18)F-FDG PET-based tumor volumes in non-small cell lung cancer (NSCLC) and the impact of tumor size and uptake heterogeneity on various approaches to delineating uptake on PET images. METHODS: Twenty-five NSCLC cancer patients with (18)F-FDG PET/CT were considered. Seventeen underwent surgical resection of their tumor, and the maximum diameter was measured. Two observers manually delineated the tumors on the CT images and the tumor uptake on the corresponding PET images, using a fixed threshold at 50% of the maximum (T(50)), an adaptive threshold methodology, and the fuzzy locally adaptive Bayesian (FLAB) algorithm. Maximum diameters of the delineated volumes were compared with the histopathology reference when available. The volumes of the tumors were compared, and correlations between the anatomic volume and PET uptake heterogeneity and the differences between delineations were investigated. RESULTS: All maximum diameters measured on PET and CT images significantly correlated with the histopathology reference (r > 0.89, P < 0.0001). Significant differences were observed among the approaches: CT delineation resulted in large overestimation (+32% ± 37%), whereas all delineations on PET images resulted in underestimation (from -15% ± 17% for T(50) to -4% ± 8% for FLAB) except manual delineation (+8% ± 17%). Overall, CT volumes were significantly larger than PET volumes (55 ± 74 cm(3) for CT vs. from 18 ± 25 to 47 ± 76 cm(3) for PET). A significant correlation was found between anatomic tumor size and heterogeneity (larger lesions were more heterogeneous). Finally, the more heterogeneous the tumor uptake, the larger was the underestimation of PET volumes by threshold-based techniques. CONCLUSION: Volumes based on CT images were larger than those based on PET images. Tumor size and tracer uptake heterogeneity have an impact on threshold-based methods, which should not be used for the delineation of cases of large heterogeneous NSCLC, as these methods tend to largely underestimate the spatial extent of the functional tumor in such cases. For an accurate delineation of PET volumes in NSCLC, advanced image segmentation algorithms able to deal with tracer uptake heterogeneity should be preferred

    Assessment of tumour size in PET/CT lung cancer studies: PET- and CT-based methods compared to pathology

    Get PDF
    BACKGROUND: Positron emission tomography (PET) may be useful for defining the gross tumour volume for radiation treatment planning and for response monitoring of non-small cell lung cancer (NSCLC) patients. The purpose of this study was to compare tumour sizes obtained from CT- and various more commonly available PET-based tumour delineation methods to pathology findings. METHODS: Retrospective non-respiratory gated whole body [(18)F]-fluoro-2-deoxy-D-glucose PET/CT studies from 19 NSCLC patients were used. Several (semi-)automatic PET-based tumour delineation methods and manual CT-based delineation were used to assess the maximum tumour diameter. RESULTS: 50%, adaptive 41% threshold-based and contrast-oriented delineation methods showed good agreement with pathology after removing two outliers (R(2)=0.82). An absolute SUV threshold of 2.5 also showed a good agreement with pathology after the removal of 5 outliers (R(2): 0.79), but showed a significant overestimation in the maximum diameter (19.8 mm, p<0.05). Adaptive 50%, relative threshold level and gradient-based methods did not show any outliers, provided only small, non-significant differences in maximum tumour diameter (<4.7 mm, p>0.10), and showed fair correlation (R(2)>0.62) with pathology. Although adaptive 70% threshold-based methods showed underestimation compared to pathology (36%), it provided the best precision (SD: 14%) together with good correlation (R(2)=0.81). Good correlation between CT delineation and pathology was observed (R(2)=0.77). However, CT delineation showed a significant overestimation compared with pathology (3.8 mm, p<0.05). CONCLUSIONS: PET-based tumour delineation methods provided tumour sizes in agreement with pathology and may therefore be useful to define the (metabolically most) active part of the tumour for radiotherapy and response monitoring purposes

    A Phase I Study of Concurrent Individualized, Isotoxic Accelerated Radiotherapy and Cisplatin–Vinorelbine–Cetuximab in Patients With Stage III Non–Small-Cell Lung Cancer

    Get PDF
    Background:In this open-label phase I study, the maximum-tolerated dose of cetuximab with concurrent chemoradiotherapy (C-CRT) in stage III non–small-cell lung cancer together with individualized, isotoxic accelerated radiotherapy (RT) was investigated.Methods:Patients with stage III non–small-cell lung cancer, World Health Organization performance status 0–1, forced expiratory volume in 1 second more than 50%, carbon monoxide diffusing capacity more than 50%, weight loss less than 10%, and no severe comorbidity were enrolled. Patients without progression after one to two cycles of gemcitabine–carboplatin were included and treated with cetuximab 400 mg/kg d7 and 250 mg/kg weekly together with RT and cisplatin (50 mg/m2 d1, 8; 40 mg/m2 d22)–vinorelbine for 5 weeks. Vinorelbine was escalated in three steps; (1) 10 mg/m2 d1, 8 and 8 mg/m2 d22, 29; (2) 20 mg/m2 d1, 8 and 8 mg/m2 d22, 29; (3) 20 mg/m2 d1, 8; 15 mg/m2 d22, 29. An individualized prescribed RT dose based on normal tissue dose constraints was applied (e.g., mean lung dose 19 Gy). The primary endpoint was the maximum-tolerated dose 3 months after the end of C-CRT; secondary endpoints were toxicity and metabolic response as assessed by positron emission tomography.Results:Between September 2007 and October 2010, 25 patients (12 men, 13 women, mean age 59 years) were included. The mean RT dose was 62 ± 6.6 Gy. The vinorelbine dose could be escalated to dose level 3. Twelve of 25 patients experienced greater than or equal to grade 3 toxicity (esophagitis 3, rash 1, diarrhea 1, cough 1, dyspnea 1, vomiting 1, and pulmonary embolism 1). No dose-limiting toxicities were observed. One patient with a complete pathological response in dose level 3 developed a fatal hemoptysis 4 months after RT. Metabolic remissions were observed in 19 of 22 patients.Conclusion:C-CRT with cetuximab and cisplatin–vinorelbine is safe to deliver at full dose. The recommended phase II dose is therefore cetuximab 400 mg/m2 d7 and 250 mg/m2 weekly, cisplatin 50 mg/m2 d1, 8; 40 mg/m2 d22 and vinorelbine 20 mg/m2 d1, 8; 15 mg/m2 d22, 29 for 5 weeks together with RT
    • 

    corecore