1,299 research outputs found
Neodymium isotopic composition and concentration in the western North Atlantic Ocean: results from the GEOTRACES GA02 section
The neodymium (Nd) isotopic composition of seawater is commonly used as a proxy to study past changes in the thermohaline circulation. The modern database for such reconstructions is however poor and the understanding of the underlying processes is incomplete. Here we present new observational data for Nd isotopes and concentrations from twelve seawater depth profiles, which follow the flow path of North Atlantic Deep Water (NADW) from its formation region in the North Atlantic to the northern equatorial Atlantic. Samples were collected during two cruises constituting the northern part of the Dutch GEOTRACES transect GA02 in 2010. The results show that the different water masses in the subpolar North Atlantic Ocean, which ultimately constitute NADW, have the following Nd isotope characteristics: Upper Labrador Sea Water (ULSW), εNd = -14.2 ± 0.3; Labrador Sea Water (LSW), εNd = -13.7 ± 0.9; Northeast Atlantic Deep Water (NEADW), εNd = -12.5 ± 0.6; Northwest Atlantic Bottom Water (NWABW), εNd = -11.8 ± 1.4. In the subtropics, where these source water masses have mixed to form NADW, which is exported to the global ocean, upper-NADW is characterised by εNd values of -13.2 ± 1.0 (2sd) and lower-NADW exhibits values of εNd = -12.4 ± 0.4 (2sd). While both signatures overlap within error, the signature for lower-NADW is significantly more radiogenic than the traditionally used value for NADW (εNd = -13.5) due to the dominance of source waters from the Nordic Seas (NWABW and NEADW). Comparison between the concentration profiles and the corresponding Nd isotope profiles with other water mass properties such as salinity, silicate concentrations, neutral densities and chlorofluorocarbon (CFC) concentration provides novel insights into the geochemical cycle of Nd and reveals that different processes are necessary to account for the observed Nd characteristics in the subpolar and subtropical gyres and throughout the vertical water column. While our data set provides additional insights into the contribution of boundary exchange in areas of sediment resuspension, the results for open ocean seawater demonstrate, at an unprecedented level, the suitability of Nd isotopes to trace modern water masses in the strongly advecting western Atlantic Ocean
Large Polarization Degree of Comet 2P/Encke Continuum Based on Spectropolarimetric Signals During Its 2017 Apparition
Spectropolarimetry is a powerful technique for investigating the physical
properties of gas and solid materials in cometary comae without mutual
contamination, but there have been few spectropolarimetric studies to extract
each component. We attempt to derive the continuum polarization degree of comet
2P/Encke, free from influence of molecular emissions. The target is unique in
that it has an orbit dynamically decoupled from Jupiter like main-belt
asteroids, while ejecting gas and dust like ordinary comets. We observed the
comet using the Higashi-Hiroshima Optical and Near-Infrared Camera attached to
the Cassegrain focus of the 150-cm Kanata telescope on UT 2017 February 21 when
the comet was at the solar phase angle of 75.7 deg. We find that the continuum
polarization degree with respect to the scattering plane is 33.8+/-2.7 % at the
effective wavelength of 0.815 um, which is significantly higher than those of
cometary dust in a high-Pmax group at similar phase angles. Assuming that an
ensemble polarimetric response of 2P/Encke's dust as a function of phase angle
is morphologically similar with those of other comets, its maximum polarization
degree is estimated to > 40 % at the phase angle of ~100 deg. In addition, we
obtain the polarization degrees of the C2 swan bands (0.51-0.56 um), the NH2
alpha bands (0.62-0.69 um) and the CN-red system (0.78-0.94 um) in a range of
3-19 %, which depend on the molecular species and rotational quantum numbers of
each branch. The polarization vector aligns nearly perpendicularly to the
scattering plane with the average of 0.4 deg over a wavelength range of
0.50-0.97 um. From the observational evidence, we conjecture that the large
polarization degree of 2P/Encke would be attributable to a dominance of large
dust particles around the nucleus, which have remained after frequent
perihelion passages near the Sun.Comment: 9 pages, 4 figures, accepted for publication in Astronomy &
Astrophysic
Feedback control using divertor multi-spectral imaging diagnostics
The heat and particle exhaust in tokamaks is guided to a dedicated region called the divertor. Unmitigated, the expected power fluxes impacting the divertor targets during reactor relevant operation exceed present-day engineering limits [1]. Real-time feedback control of plasma detachment, aregime characterized by a large reduction in plasma temperature and pressure at the divertor target,is required to maintain a sufficient reduction of these fluxes [2, 3]. During plasma detachment atemperature gradient along the divertor leg is established. This gradient gives rise to a sharp opticalemission fall-off, frequently referred to as a front. These fronts are indicative of a local electron temperature, and their location can be used as a measure of detachment strength. A real-time algorithmfor detection of these radiation fronts using multi-spectral imaging was recently developed [4], andexperimentally demonstrated [5] on the Tokamak à Configuration Variable (TCV) [6] utilizing themulti-spectral imaging diagnostic MANTIS [7].In this talk, we will show the state-of-the art and further development of using MANTIS for feedback control of the divertor plasma. Including: 1) feedback-control of the C-III emission front usingdeuterium fueling and the N-II emission front using nitrogen seeding, and 2) the use of system identification techniques to obtain control-oriented models for offline controller design. We conclude withour view towards multi-input, multi-output (MIMO) control of the divertor plasma using MANTIS,fully exploiting its 10 available cameras. Specifically, combining multiple spectrally filtered imagesto obtain real-time information on the loss processes driving detachment.References[1] R. Pitts et al., Nucl. Mat. Ener. 20, 100696 (2019)[2] B. Lipschultz et al., Nuclear Fusion 56, 056007 (2016)[3] A. Leonard, Plasma Phys. Control. Fusion 60, 044001 (2018)[4] T. Ravensbergen et al., Nucl. Fusion 60, 066017 (2020)[5] T. Ravensbergen et al., Nat. Commun. 12, 1105 (2021)[6] S. Coda et al., Nucl. Fusion 59, 112023 (2019)[7] A. Perek et al., Rev. Sci. Instrum. 90, 123514 (2019)<br/
Kalman filter density reconstruction in ICRH discharges on ASDEX Upgrade
Plasma density is one of the key quantities that need to be controlled in real-time as it scales directly with fusion power and, if left uncontrolled, density limits can be reached leading to a disruption. On ASDEX Upgrade (AUG), the real-time measurements are the line-integrated density, measured by the interferometers, and the average density derived from the bremsstrahlung measured by spectroscopy. For control, these measurements are used to reconstruct the radial density profile using an extended Kalman filter (EKF). However, in discharges where ion cyclotron resonance heating (ICRH) is used, the measurements from the interferometers are corrupted and the reconstructed density is false. In this paper, the existing EKF implementation is improved, implemented and experimentally verified on AUG. The new EKF includes a new particle transport model in the prediction model RAPDENS as well as a new representation of ionization and recombination. Furthermore, an algorithm was introduced that is capable of detecting the corrupt diagnostics; this algorithm is based on the rate of change of the innovation residual. The changes to the RAPDENS observer resulted in better density reconstruction in ICRH discharges where corrupt measurement occur. The new version has been implemented on the real-time control system at AUG and functions properly in ICRH discharges.</p
Neodymium isotopic composition and concentration in the western North Atlantic Ocean: Results from the GEOTRACES GA02 section
The neodymium (Nd) isotopic composition of seawater is commonly used as a proxy to study past changes in the thermohaline circulation. The modern database for such reconstructions is however poor and the understanding of the underlying processes is incomplete. Here we present new observational data for Nd isotopes and concentrations from twelve seawater depth profiles, which follow the flow path of North Atlantic Deep Water (NADW) from its formation region in the North Atlantic to the northern equatorial Atlantic. Samples were collected during two cruises constituting the northern part of the Dutch GEOTRACES transect GA02 in 2010. The results show that the different water masses in the subpolar North Atlantic Ocean, which ultimately constitute NADW, have the following Nd isotope characteristics: Upper Labrador Sea Water (ULSW), eNd = -14.2 ± 0.3; Labrador Sea Water (LSW), eNd = -13.7 ± 0.9; Northeast Atlantic Deep Water (NEADW), eNd = -12.5 ± 0.6; Northwest Atlantic Bottom Water (NWABW), eNd = -11.8 ± 1.4. In the subtropics, where these source water masses have mixed to form NADW, which is exported to the global ocean, upper-NADW is characterised by eNd values of -13.2 ± 1.0 (2sd) and lower-NADW exhibits values of eNd = -12.4 ± 0.4 (2sd). While both signatures overlap within error, the signature for lower-NADW is significantly more radiogenic than the traditionally used value for NADW (eNd = -13.5) due to the dominance of source waters from the Nordic Seas (NWABW and NEADW). Comparison between the concentration profiles and the corresponding Nd isotope profiles with other water mass properties such as salinity, silicate concentrations, neutral densities and chlorofluorocarbon (CFC) concentration provides novel insights into the geochemical cycle of Nd and reveals that different processes are necessary to account for the observed Nd characteristics in the subpolar and subtropical gyres and throughout the vertical water column. While our data set provides additional insights into the contribution of boundary exchange in areas of sediment resuspension, the results for open ocean seawater demonstrate, at an unprecedented level, the suitability of Nd isotopes to trace modern water masses in the strongly advecting western Atlantic Ocean
Correcting for non-periodic behaviour in perturbative experiments: application to heat pulse propagation and modulated gas-puff experiments
This paper introduces a recent innovation in dealing with non-periodic behavior often referred to as transients. These transients can be the result from unforced response due to the initial condition and other drifts which are a source of error when performing and interpreting Fourier analysis on measurement data. Fourier analysis is particularly relevant in system identification used to build feedback controllers and the analysis of various pulsed experiments such as heat pulse propagation studies. The basic idea behind the methodology is that transients are continuous complex-valued smooth functions in the Fourier domain which can be estimated from the Fourier data. Then, these smooth functions can be approximately subtracted from the data such that only periodic components are retained. The merit of the approach is shown in two experimental examples, i.e., heat pulse propagation (core transport analysis) and radiation front movement due to gas puffing. The examples show that the quality of the data is significantly improved such that it allows new interpretation of the results even for non-ideal measurements.</p
- …