2 research outputs found

    On The Geometrıc Interpretatıons of The Kleın-Gordon Equatıon And Solution of The Equation by Homotopy Perturbation Method

    Get PDF
    This paper is organized in the following ways: In the first part, we obtained the Klein Gordon Equation (KGE) in the Galilean space. In the second part, we applied Homotopy Perturbation Method (HPM) to this differential equation. In the third part, we gave two examples for the Klein Gordon equation. Finally, We compared the numerical results of this differential equation with their exact results. We also showed that approach used is easy and highly accurate

    A POWERFUL ITERATIVE APPROACH for QUINTIC COMPLEX GINZBURG-LANDAU EQUATION within the FRAME of FRACTIONAL OPERATOR

    Get PDF
    The study of nonlinear phenomena associated with physical phenomena is a hot topic in the present era. The fundamental aim of this paper is to find the iterative solution for generalized quintic complex Ginzburg-Landau (GCGL) equation using fractional natural decomposition method (FNDM) within the frame of fractional calculus. We consider the projected equations by incorporating the Caputo fractional operator and investigate two examples for different initial values to present the efficiency and applicability of the FNDM. We presented the nature of the obtained results defined in three distinct cases and illustrated with the help of surfaces and contour plots for the particular value with respect to fractional order. Moreover, to present the accuracy and capture the nature of the obtained results, we present plots with different fractional order, and these plots show the essence of incorporating the fractional concept into the system exemplifying nonlinear complex phenomena. The present investigation confirms the efficiency and applicability of the considered method and fractional operators while analyzing phenomena in science and technology
    corecore