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Abstract 
 
This paper is organized in the following ways: In the first part, we obtained the Klein Gordon 
Equation (KGE) in the Galilean space. In the second part, we applied Homotopy Perturbation 
Method (HPM) to this differential equation. In the third part, we gave two examples for the Klein 
Gordon equation. Finally, We compared the numerical results of this differential equation with 
their exact results. We also showed that approach used is easy and highly accurate.  
 
Keywords: The Galilean space, The Homotopy perturbation method, The Klein-Gordon  
                        Equation, Linear and nonlinear partial differential equations 
 
MSC 2010 No.: 35A20, 35A25, 81Q05  
 
 
 
1. Introduction  
 
 
1.1.  The Klein-Gordon, Sine-Gordon and Sinh-Gordon Equations 
 
The relativistic wave equation of the motion of a free particle with zero spin found by physicists 
O. Klein and V. Gordon is called Klein-Gordon equation (KGE). If the particle is characterized 
by one space coordinate x , and then the equation has the form as 
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2 .tt xxu u m u                                                                                                                      (1.1)                         

 
where t is time,  xtuu ,  is wave function, and m  is the mass of the particle. Note that 
Equation (1.1) for 0m  is a classical one-dimensional wave equation (the equation of a 
vibrating string) whose solution  ,u t x   has the form    f x t f x t   , where  tf  is an 

arbitrary function.  By analogy with KGE the equations  
  

uuu xxtt sin                                                                                                                    (1.2) 

                                                   
uuu xxtt sinh                                                                                                                  (1.3)                         

 
are called Sine-Gordon equations (SGE) and Sinh-Gordon equation (SHGE), respectively. 
Equation (1.2) has also an important physical meaning: since the left-hand side of this equation 
coincides with the left-hand side of the equation of a vibrating string  of the wave [Inc and  
Ugurlu (2007)] Equation (1.1), it is also a wave equation, but, unlike Equation (1.1), it is 
nonlinear (Liao, He (2003, 2004, 2006, 2007, Bektas et al. (2004)) and describes physical 
processes related to the nonlinear [Adomian (1986)] waves, in particular solitary waves 
(solitons) [Drazin(1989)] which preserve their shape under interaction. This theory is very 
important for the theory of plasm. 
 
The n-dimensional Galilean and pseudo-Galilean spaces n  and n

1 can be defined as the affine 

space nE  whose hyperplane at infinity is endowed by the geometry of the Euclidean space 
Rosenfeld (1969) 1nR  or the pseudo – Euclidean space 1

1
nR

  [see, Rosenfeld (1969) pp. 295-

297]. If a system of affine coordinates in the space nE
  is chosen such that the basis vectors 

2 3, , , ne e e  are directed to the hyperplane at infinity of 1nR  or 1
1
nR

 , the distance d  between 

two points  1 2, , , nX x x x   and  1 2, , , nY y y y    is equal to 11 xy  . If 11 yx   , when 

0d , then these points have another distance d 1  equal to the distance between the 

points  1 2 3, , , nX x x x   and  1 2 3, , , nY y y y   in 1nR  or 1
1
nR , respectively. The motions in 

n  and 1
n have the form 

 
 1 1 1 1 1 1, , 2,3, ,i i i i i

I jx x a x A x A x a i j n       , 

 
where  i

jA  is an orthogonal or pseudo–orthogonal    11  nn – matrix, respectively (here the 

Einstein rule for summation is used). These formulas coincide with the formulas of 
transformation of  orthogonal coordinates in the n-dimensional isotropic or pseudo isotropic 
spaces nI or n

II , respectively, nI is the n-dimensional affine space nE  whose hyperplane at 

infinity is endowed with the geometry of the co-Euclidean space  InR  * or the copseudo-

Euclidean space  In
IR  * corresponding to InR   and In

IR   in the duality principle of the projective 

space InP  . The motions in nI  and n
II  have the from 

2
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 1 1 1 1 1, , , 2,3, , .i i i i j i

i jx x A x a x A x a i j n        

 
The hyperplane at infinity of 1nR  and 1n

IR , that is, the  2n  plane 01 x  in the 

hyperplane 00 x , and the absolute imaginary or real hyperquadric in this  2n -plane, which 

is the intersection of all hyperspheres in 1nR  or 1n
IR , form the absolutes of n and n

1 . For 3   

and 3
1

  the absolutes consist of the plane at infinity, line 01 x , and two imaginary conjugate or 

real points on this line. Depending on a position relative to the absolute of  For 3 and 3
1

  the 
lines and planes in these  spaces are divided into two classes: lines of general position which do 
not meet the line 01 x , and special lines which meet the line: planes of general position which 

do not contain the line 01 x  (the planes 2 or 2
1 ),and special planes which contain this line 

(the planes 2R  or 2
1R ). 

  
At each point X in 3 or 3

1
 we determine orthonormal frames which consist of vectors 321 ,, eee  

of length 1 or i such that the line 1Xe is a line of general position, and the lines 2Xe , 3Xe  are 

special lines which divide harmonically the lines joining X  with two imaginary conjugate or 
real points of the absolute whose equations will be written as 
 

    0
33

33

22
22  xgxg , 

 
where 13322  gg  for 3  and 13322  gg  for 3

1 . 

 
If a point X  is characterized by a position vector x, then the derivation formulas for these frames 
are 
 

3
2

2
32

2
333

3
2211 ,,,,   edeedeedeedx u

u
i

i , 

 
where 1,3,2,3,2,1,  uji  for  3   and 1  for 3

1 . Exterior differentiation of these 
equations gives 
 

.0,,,0 3
211   dddd u

v
vuu

i
iuI  ,                                                   (1.4)         

 
where 2,3v  . Formulas (1.4) show that the linear forms 1  and 3

2  are locally exact 
differentials, therefore 
 

,1 du           .3
2 dv                                                                                                      (1.5) 

                                  
Consider a curve C of general position in 3  or 3

1 . If X is a point on this curve, e1 is tangent 

vector to this curve at X, 2e  is a special vector of the oscillating plane of this curve at X, and 3e  

is the third vector of an orthonormal frame. The derivation equations of this curve are  

3
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2
3

3
2

2
1

1 ,,, e
dt

de
e

dt

de
ke

dt

de
e

dt

dx   ,                                                               (1.6)                 

 
where t is the natural parameter He (2001), k and    are the curvature and the torsion of the 
curve. 
 
Consider a surface S of general position in 3  or 3

1
 
. Let us suppose that the intersections of this 

surfaces with Euclidean or pseudo-Euclidean planes 1x  const. are not straight lines, that is, this 
surface has no special rectilinear generators. We determine at a point X of this surface the 
orthonormal frame, whose vectors 1e  and e2 are tangent vectors to S at X and e3  is the normal 
vector to S at X , that is, this vector is orthogonal to e2 (the vectors e2 and e3 of this are in a plane 
x1 = 0). The differential equation of Pfaff of the surface S is 
 

3 0  .                                                                                                                                (1.7)                         
 
  The exterior differentiation of the equation gives 
 

,03
2

23
1

1                                                                                                         (1.8) 

                                               
hence, by means of the Cartan lemma, we obtain 
 

213
2

21
1

3 ,  cbba   .                                                                                 (1.9) 
                                               
The first fundamental forms of the surface S for general curves are  
 

 212  dsI ,                                                                                                                (1.10)   
                                   
and for special curves are 
 

   22
22

2
1 gdsI I   ,                                                                                                    (1.11)                         

 
 that is, intersections of S, with planes 1x  . 
 
The second fundamental form of the surface S is  
 

       2 22 1 3 2 3 1 1 2 2
3 33 1 2 22, 2 .II d a e g g a b c               

                           (1.12) 

 

We call a surface in 3
1

 spacelike if 122 g  and timelike if 122 g . The line of the absolute 
determines on the surface S, the Koenigs net consisting of special curves which are intersections 
of S with the planes 0Ix , and of curves of tangency of cones with apices on the line of the 

4
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absolute tangent to S. The curves of this net are curvature lines of S, since normal lines to S along 
curves of this net forms developable surface. 
 
At the points of the curvature lines of S of general position, vectors e2 of moving frames have 
constant directions, since they are directed to the apices of cones, therefore for curvature curves 
of general position, 03

2  . It follows from (1.5), that the equations of curvature curves of S are 
const.const  vu . The coordinates u and v are called canonical coordinates on the surface S. 

  
The principal curvatures of S, that is normal curvatures IIIkn /   for curves 01   and 

03
2   are, respectively,  

 

 
2

1 2 33, .
ac b

k c k g
c

 
                                                                                                 (1.13)     

  
Hence, the Gaussian curvature K = Ke = k1 k2   of the surface S is 
 

 2
3321 bacgkkK   .                                                                                                 (1.14)                         

 

Therefore, the Gaussian curvature of a surface S in 3  and of a timelike surface in 3
1  is equal to 

2bac   and of a spacelike surface in 3
1  is equal to acb 2 . Note that the condition for the 

surfaces S in 3  and 3
1  which have no special rectilinear generators is the equality c = 0. 

The curves on a surface S which are determined by the equation II = 0 are asymptotic curves. 
Since the form II is expressed by the formula (1.12), the condition for finding asymptotic 
directions  =  2/ 1 of general position is  
 

02 2   cba .                                                                                                           (1.15)                         
 
In the case when vector e1 of the moving frame is fixed at every point A on S, the moving frame 
is canonical and all other forms are principal, that is 
 

 2
1

2
1   a .                                                                                                             (1.16)                        

   
The exterior differentiation of the forms (1.9) and (1.16) and the substitution of expression (1.7), 
(1.16), (1.14) and (1.16) into (1.4) give 
 

  - Kg3312   ,                                                                                                    (1.17) 

 
  - 02 12  cabba  ,                                                                                               (1.18) 
                                     
      - 2 1 0b c c   ,                                                                                                         (1.19) 

                                    

5
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where the indices 1p  and 2p  mean Pfaffian derivatives determined by the formula  

      
2

2 ppdp I
I  . 

 
Let the vector 1e e1 be tangent to a curvature curve of general position, that is, the coordinate 

system on the surface S is canonical system u, v, and let us find the corresponding differential 
forms of the moving frame. Since the curvature of a special curvature curve is ,11 dsdvk   

where v  is on angle between tangent lines and 1s  is the length of special curve then formulas 

(1.11) and (1.13) imply that 2dv cw . Let us denote the radius of curvature of this curve by  
 

11
1

  ck                                                                                                                     (1.20)                         
 
then we have  
 

dv 2 .                                                                                                                        (1.21) 
 
By the substitution (1.21) into the second formula (1.16) and by formulas (1.5) and 0a , we 
obtain  
       

0b .                                                                                                                                (1.22) 
 
Therefore, the formulas (1.13) have the from  
 

agkck 3321 ,   .                                                                                                         (1.23)                         

 
By formulas (1.5) and (1.21) we can express the Pfaffian derivatives p1 and p2 through the partial 
derivates p

u
and p v  in the form 1 up p , 2 vp cp . Therefore, by the equations (1.18), (1.19) and 

(1.22) we obtain  
 

,, v
u

u ac  

  

 
that is,  
 

.2112
1 dvduaa uvuv     

 
In this case formula (1.17) can be written as 
 

aa uuvv   .                                                                                                               (1.24)  

                                 
This formula shows that the conditions of integrability of the differential equations of a surface 
S  are reduced to single differential equation for its principal  curvatures 1k  and 2k . 

6
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Let a surface S  have a curvature K const = 2m   where .1  When a surface S  is referred 
to the canonical coordinates, let us show that the equation (1.24) can be reduced to the form 
(1.1). In this case formulas (1.23) can be written as  
 

 21
12

1
1 , mKkkck    

 
and also formula (1.24) can be written as 
 

 2
33

2
33 mgmg uuvv  .                                                                                          (1.25)                    

 
Let us set 1  for a surface in 3  and for a spacelike surface in 3

1 ; then we obtain 
 

  22 mm vvuu  , 

 
that is, if we denote u by t, mv /  by x, the function   by u for  m = 1 , we obtain an equation 
  

 uuu xxtt  . 

 
 
2.  An Analysis of the HPM  
 
A lot of methods have been used to obtain solutions of partial differential equations in the 
literature [He and Elagan (2011)].  We consider HPM which is one of the most used methods. 
The first of all,  we must obtain form HMP [Abbasbandy (2006), He (1999)] for HPM. To 
illustrate the basic ideas of this method, we consider the following equation: 
 

    ,,0  rrfuA                                                                                                      (2.1) 
 
with boundary condition 
 

,,0, 










r
n

u
uB                                                                                                          (2.2)  

  
where A is a general differential operator, B a boundary operator, f (r) a known analytical 
function and Γ is the boundary of the domain Ω. 
 
A can be divided into two parts which are L and N, where L is linear and N is nonlinear. Equation  
(2.1) can therefore be rewritten as follows; 
 

      0 , .L u N u f r r                                                                                          (2.3) 

 
Homotopy perturbation structure is shown as following; 

7
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           0, 1 0,v p p L v L u p A v f r                                                            (2.4) 

 
where  
 
                   1,0:, prv .                                                                                                  (2.5) 
 
In Equation  (2.4), p   [0, 1] is an embedding parameter and 0u  is the first approximation that 

satisfies the boundary condition. We can assume that the solution of Equation  (2.4) can be 
written as a power series in p, as following; 
 

2 3
0 1 2 3 ,v v pv p v p v                                                                                                 (2.6) 

 
and the best approximation for solution is 
 

0 1 2 3
1

lim ,
p

u v v v v v


                                                                                                (2.7)    

 
The convergence of series Equation (2.7) has been proved by He (2000). This technique can 
have full advantage of the traditional perturbation techniques. The series Equation (2.7) is 
convergent rate depends on the non-linear operator ( )A v  (the following opinions are suggested 
by He (2000):    

(1)  The second derivative of ( )N v  with respect to v  must be small because the parameter may 
be relatively largee, i.e., 1p  . 

(2)  The norm of 1( / )L N v   must be smaller than one so that the series converges. 

 
3.  Applications of The HPM   
 
 
Example 1.  
 
We consider a linear partial differential equation in order to illustrate the technique discussed 
above. The problem of the form is 
 

uuu xxtt  ,                                                                                                                      (3.1)  

 
where exact solution of the differential Equation (3.1) is given by; 
 

( , ) ( 1)sinu x t x t                                                                                                               (3.2)  
 
and initial conditions        

8
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( ,0) 1.tu x x    

 
Structure of HPM He (2004, 2003, 2001, 2009) for Equation (3.1) is  
                                                            

 
.. .. ..

''
01 [ ] 0 ,p Y u p Y Y Y        

                                                                                    (3.3)                         

           
.. .. .. .. ..

''
0 0 0 ,Y u pY p u pY pY pY                                                                  

   
.. .. ..

''
0 0 0 ,Y u pu pY pY                                                                                               (3.4)     

                          

where 
2..

2





y
Y

t
, 

2
"

2





y
Y

x
 and  1,0p . We suppose that the solution of Equation (3.1) has the 

form as following; 
 

2 3
0 1 2 3    Y Y pY p Y p Y  

0

,n
n

n

p Y x t




                                                                    (3.5) 

.. .. .. .. ..
2 3

0 1 2 3Y Y pY p Y p Y     ,  
" " " 2 " 3 "

0 1 2 3Y Y pY p Y p Y     . 

 
Then, substituting Equation (3.5) into Equation (3.4), and rearranging based on powers of p -
terms, we obtain: 
 

   
.. .. .. .. .. ..

2 3 " " 2 " 3 " 2 3
0 1 2 3 0 0 0 1 2 3 0 1 2 3 0 ,Y pY p Y p Y u pu p Y pY p Y p Y p Y pY p Y p Y               

 
 

.. .. .. .. .. ..
2 3 " 2 " 3 " 2 3

0 1 2 3 0 0 0 1 2 0 1 2 0 ,Y pY p Y p Y u pu pY p Y p Y pY p Y p Y             
.. ..

0
0 0: 0p Y u                                                                                                                  (3.6) 

.. ..
1 "

1 0 0 0: 0p Y u Y Y                                                                                                           (3.7) 
..

2 "
2 1 1: 0p Y Y Y                                                                                                                (3.8) 

..
3 "

3 2 2: 0p Y Y Y                                                                                                               (3.9)              

 
with solving Equation (3.6- 3.9); 
 

.. ..
0

0 0 0 0: 0 ( ,0) 1,p Y u Y u x x                                                                                    (3.10) 
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 

.. .. .. ..
1 " "

1 10 0 0 0 0 0

..
"

1 0 0 0

0 0

3
1

: 0

1
1 ,

6

t t

p Y u Y Y Y u Y Y

Y u Y Y dtdt

Y t x

       

       

  

                                                                                                     

  

 

.. ..
2 " "

2 21 1 1 1

"
2 1 1

0 0

5
2

: 0

1
1 ,

5!

t t

p Y Y Y Y Y Y

Y Y Y dt dt

Y t x

     

    

  

                                                                   (3.11) 

 
.. ..

3 " "
3 32 2 2 2

"
3 2 2

0 0

7
3

: 0

1
( 1),

7!

t t

p Y Y Y Y Y Y

Y Y Y dt dt

Y t x

     

    

   

                                                                     (3.12) 

                             
 
the terms of Equation (3.5) could easily calculated. When we consider the series Equation (3.5) 
with the terms Equations (3.6-3.9) and suppose 1p , we obtain approximation solution of 
Equation (3.1) as following; 
 

 ,u x t  0 1 2 3 .Y Y Y Y                                                                                                (3.13) 

 
As a result, the components 0 1 2 3, , , ,  Y Y Y Y  are identified. We obtain analytic solution of 

Equation (3.1) as following; 
 

       3 5 71 1 1
, 1 1 1 ( 1)

6 120 5040
u x t t x t x t x t x          

   
3 5 7

, 1
3! 5! 7!

t t t
u x t x t

 
      

 
  
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a. Exact Solution                                       b.  Approximation Solution HPM 
 
Figure 1. The 3D surfaces for 3Y in comparison with the analytic solution ( , )u x t  when t = 

0.05 with initial condition of Equation (3.1) by means of HPM 
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   a. Exact Solution                                       b.  Approximation Solution HPM 

 
Figure 2. The 2D plots of the numerical results for 3Y in comparison with the analytic solution 

( , )u x t  when t = 0.05 with initial condition of Equation (3.1) by means of HPM 

 
 
Example 2. We consider a nonlinear partial differential equation given as  
 

2 0,tt xx xu u u uu         0 1 x , t  0.                                                               (3.14)  

 
The boundary conditions and initial condition are 
 

( ,0) ( ,0) , 0 1,

(0, ) , ( 0).

x
t

t

u x u x e x

u t e t

   

 
                                                                                    (3.15)                         

 
Structure of HPM He (2004, 2003, 2001, 2009) for Equation (3.1) is  
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 
.. .. ..

'' 2 '
01 [ ] 0,p Y u p Y Y Y YY         

                                                                        (3.16)                         

            
.. .. .. .. ..

'' 2 '
0 0 0,Y u pY p u pY pY pY pYY                     

            
.. .. ..

'' 2 '
0 0 0 ,Y u pu pY pY pYY                                                                         (3.17)     

                          

where 
2 2..

" '
2 2

, , ,
  

  
  

y y y
Y Y Y

t x x
 and  1,0p . We suppose that the solution of Equation 

(3.14) has the form as following; 
 

 2 3
0 1 2 3

0

, ,n
n

n

Y Y pY p Y p Y p Y x t




                                                                      (3.18) 

      
.. .. .. .. ..

2 3
0 1 2 3 ,Y Y pY p Y p Y                                                                         

" " " 2 " 3 "
0 1 2 3 ,Y Y pY p Y p Y                                                                                          (3.19) 

 
        ' ' ' 2 ' 3 '

0 1 2 3 .Y Y pY p Y p Y      

 
Then, substituting Equation (3.19) into Equation (3.17), and rearranging based on powers of p -
terms, we obtain; 
                                

.. ..
0

0 0: 0 ,p Y u                                                                                                                (3.20) 
.. ..

1 " ' 2
1 0 0 0 0 0: 0 ,p Y u Y Y Y Y                                                                                              (3.21) 

..
2 " ' '

2 1 1 0 0 1 0 1: 2 0 ,p Y Y Y Y Y Y Y Y                                                                                      (3.22) 
..

3 " ' ' 2 '
3 2 2 0 1 1 1 0 2 0 2: 2 0 ,p Y Y Y Y Y Y Y Y Y Y Y                                                                     (3.23) 

                   
 
with solving Equation (3.20-3.23); 
 

.. ..
0

0 0 0 0 0: 0 ( ,0) ( 1),x
tp Y u Y u Y u x e t                                                                (3.24) 

.. .. .. ..
1 " ' 2 " ' 2

1 10 0 0 0 0 0 0 0 0 0

..
" ' 2

1 0 0 0 0 0

0 0

" ' 2
1 0 0 0 0

0 0

2 3

1

: 0 ,

,

,

,
2! 3!

t t

t t

x

p Y u Y YY Y Y u Y YY Y

Y u Y YY Y dtdt

Y Y YY Y dtdt

t t
Y e

         

        

     

 
   

 




                                                                                  

12

Applications and Applied Mathematics: An International Journal (AAM), Vol. 7 [2012], Iss. 2, Art. 10

https://digitalcommons.pvamu.edu/aam/vol7/iss2/10



AAM: Intern. J., Vol. 7, Issue 2 (December 2012)                                                                                                    631                               
          

   

..
2 " ' '

2 1 1 0 0 1 0 1

..
" ' '

2 1 1 0 0 1 0 1

" ' '
2 1 1 0 0 1 0 1

0 0

4 5

2

: 2 0 ,

2 ,

2 ,

,
4! 5!

t t

x

p Y Y Y Y Y Y Y Y

Y Y Y Y Y Y Y Y

Y Y Y Y Y Y Y Y dt dt

t t
Y e

    

    

      

 
   

 

                                                 (3.25) 

..
3 " ' ' 2 '

3 2 2 0 1 1 1 0 2 0 2

..
" ' ' 2 '

3 2 2 0 1 1 1 0 2 0 2

" ' ' 2 '
3 2 2 0 1 1 1 0 2 0 2

0 0

6 7

3

: 2 0 ,

2 ,

2 ,

,
6! 7!

t t

x

p Y Y Y Y Y Y Y Y Y Y Y

Y Y Y Y Y Y Y Y Y Y Y

Y Y Y Y Y Y Y Y Y Y Y dt dt

t t
Y e

      

      

        

 
   

 

                         (3.26) 

                                    
 
the terms of Equation (3.18) could calculated. When we consider the series Equation (3.18) with 
the terms Equation (3.24)- Equation (3.26) and suppose 1p , we obtain approximation solution 
of Equation (3.14) as following; 
 

  ,u x t  0 1 2 3    Y Y Y Y                                                                                            (3.27) 

 
As a result, the components 0 1 2 3, , , ,Y Y Y Y  are identified. We obtain analytic solution of Equation 

(3.14) 

 
2 3 4 5 6 7

, 1
2! 3! 4! 5! 6! 7!

x t t t t t t
u x t e t

 
         

 
 . 
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a: Exact Solution                                       b:  Approximation Solution HPM  

 
Figure 3.  The 3D surfaces for 3Y in comparison with the analytic solution ( , )u x t  when  

t = 0.05 with initial condition of Equation (3.14) by means of HPM 
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a. Exact Solution                                               b.  Approximation Solution HPM 

 
Figure 4. The 2D plots for 3Y in comparison with the analytic solution ( , )u x t  when t 

=0.05 with initial condition of Equation (3.14) by means of HPM 
 
 
 

Table 2.    Absolute errors obtain for Example. 2. 
 The numerical results for 3Y in comparison with the analytic solution ( , )u x t  

when 0.1x  with initial condition of Eq.(3.14) by means of HPM, ADM, VIM 
0.1x 

t Exact Hpmu u  
Exact Vimu u

Exact Admu u  
0.1 2,77112E–13 9,36547E–8 2,77112E–13 
0.2 7,17608E–11 3,04824E–6 7,17608E–11 
0.3 1,86016E–09 2,35485E–5 1,86016E–09 
0.4 1,87949E–08 1,00973E–4 1,87949E–08 
0.5 1,13330E–07 3,13615E–4 1,13330E–07 

 
 

Table. 1 Absolute errors obtain for Example.1. 
The numerical results for 3Y in comparison with the analytic solution ( , )u x t  when 

0.1x   with initial condition of Equation  (3.1) by means of HPM, ADM, VIM 
 0.1x 
t Exact Hpmu u  

Exact Vimu u  
Exact Admu u  

0.1 1,3877800E–17 -0,329633 1,3877800E–17 

0.2 -5,551120E–17 -0,657070 -5,551120E–17 

0.3 0 -0,980122 0 

0.4 1,2221250E–14 -1,296630 1,2221250E–14 

0.5 2,1538300E–14 -1,604450 2,1538300E–14 
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4. Numerical Comparison 
 
Tables 1 and 2 show the difference of analytical solution and numerical solution of the absolute 
error. We also demonstrate the numerical solution of Equation (3.1) in Figure 1(a), the 
corresponding approximate numerical solution in Figure 1(b) and Equation (3.14) in Figure 2(a), 
the corresponding approximate numerical solution in Figure 2(b). We note that only 3 terms 
were used in evaluating the approximate solution. We achieved a very good approximation with 
the actual solution of the equations by using 3 terms only of the Homotopy perturbation method 
above. It is evident that the overall errors can be made smaller by adding new terms to the 
perturbation. Numerical approximations shows a high degree of accuracy and in most cases n, 
the n-term approximation, is accurate for quite low values of n. The solution is very rapidly 
convergent by utilizing the homotopy perturbation method. We obtained that the true of this 
methodology justify from this numerical results, even in the few terms approximation is 
accurate.  
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(a) Exact Solution                 (b) Numerical Solution (HPM) 
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(a) Exact Solution   (b) Numerical Solution (VIM) 

 
Figures B 

 
5. Conclusion 
 
The method have been used for solving a lot of differential equations such as ordinary, partial, 
linear, nonlinear, homogeneous, nonhomogeneous by many researchers. In this research, we used 
for solving linear and nonlinear Klein-Gordon equations with initial conditions. According to 
these datas such as 3D, 2D graphics and Tables, one realize that one of the advantages of HPM 
displays a fast convergence of the solutions.  
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