15 research outputs found

    Multiscale Molecular Simulations of Polymer-Matrix Nanocomposites

    Get PDF

    Double-exponential decay of orientational correlations in semiflexible polyelectrolytes

    No full text
    In this paper we revisited the problem of persistence length of polyelectrolytes. We performed a series of Molecular Dynamics simulations using the Debye-Ḧuckel approximation for electrostatics to test several equations which go beyond the classical description of Odijk, Skolnick and Fixman (OSF). The data confirm earlier observations that in the limit of large contour separations the decay of orientational correlations can be described by a single-exponential function and the decay length can be described by the OSF relation. However, at short countour separations the behaviour is more complex. Recent equations which introduce more complicated expressions and an additional length scale could describe the results very well on both the short and the long length scale. The equation of Manghi and Netz when used without adjustable parameters could capture the qualitative trend but deviated in a quantitative comparison. Better quantitative agreement within the estimated error could be obtained using three equations with one adjustable parameter: 1) the equation of Manghi and Netz; 2) the equation proposed by us in this paper; 3) the equation proposed by Cannavacciuolo and Pedersen. Two characteristic length scales can be identified in the data: the intrinsic or bare persistence length and the electrostatic persistence length. All three equations use a single parameter to describe a smooth crossover from the short-range behaviour dominated by the intrinsic stiffness of the chain to the long-range OSF-like behaviour.© Springer-Verlag 2012.Initial part of this work was done within the project funded by the Grant Agency of the Charles University in Prague, project number 43-257269. Further support came from the MSMT of the Czech Republic, Research plan MSM0021620857 and from the Grant Agency of the Czech Republic, grants P205/11/J043 and P106/12/0143.Peer Reviewe

    Autonomic Nervous System under Ketamine/xylazine and Pentobarbital Anaesthesia in a Wistar Rat Model: A Chronobiological View

    No full text
    The aim of the present study was to determine the effect of ketamine/xylazine and pentobarbital anaesthesia on heart rate variability as a marker of autonomic nervous system activity. The experiments were performed in ketamine/xylazine (10 mg/kg/15 mg/kg) and pentobarbital (40 mg/kg, i.p.) anaesthetized female Wistar rats, after adaptation to a light-dark cycle of 12 hours light: 12 hours dark. Heart rate variability parameters (RR interval, power  VLF (very low frequency), power LF (low frequency), power HF (high frequency) and relative powers) were evaluated during spontaneous breathing as a function of the light-dark cycle (LD cycle). Significant LD differences were found in the duration of RR intervals in ketamine/xylazine compared with pentobarbital-anaesthetized rats. Correlation analysis revealed moderate dependency between the RR interval duration and HF and LF power parameters in ketamine/xylazine anaesthesia in both light and dark parts of the cycle. In pentobarbital-anaesthetized rats, correlation analysis demonstrated a moderate dependence between RR interval duration and HF and  VLF power parameters, but only in the dark part of the LD cycle. Ketamine/xylazine anaesthesia increased parasympathetic activity, and suppressed sympathetic and baroreceptor activity independently of the light-dark cycle. LD differences in RR interval duration were not eliminated. Pentobarbital anaesthesia increased parasympathetic activity, decreased sympathetic and baroreceptor activity, and eliminated LD differences in RR interval duration

    Double-exponential decay of orientational correlations in semiflexible polyelectrolytes

    No full text
    In this paper we revisited the problem of persistence length of polyelectrolytes. We performed a series of Molecular Dynamics simulations using the Debye-Hückel approximation for electrostatics to test several equations which go beyond the classical description of Odijk, Skolnick and Fixman (OSF). The data confirm earlier observations that in the limit of large contour separations the decay of orientational correlations can be described by a single-exponential function and the decay length can be described by the OSF relation. However, at short countour separations the behaviour is more complex. Recent equations which introduce more complicated expressions and an additional length scale could describe the results very well on both the short and the long length scale. The equation of Manghi and Netz when used without adjustable parameters could capture the qualitative trend but deviated in a quantitative comparison. Better quantitative agreement within the estimated error could be obtained using three equations with one adjustable parameter: 1) the equation of Manghi and Netz; 2) the equation proposed by us in this paper; 3) the equation proposed by Cannavacciuolo and Pedersen. Two characteristic length scales can be identified in the data: the intrinsic or bare persistence length and the electrostatic persistence length. All three equations use a single parameter to describe a smooth crossover from the short-range behaviour dominated by the intrinsic stiffness of the chain to the long-range OSF-like behaviour

    Double-exponential decay of orientational correlations in semiflexible polyelectrolytes

    No full text
    In this paper we revisited the problem of persistence length of polyelectrolytes. We performed a series of Molecular Dynamics simulations using the Debye-Hückel approximation for electrostatics to test several equations which go beyond the classical description of Odijk, Skolnick and Fixman (OSF). The data confirm earlier observations that in the limit of large contour separations the decay of orientational correlations can be described by a single-exponential function and the decay length can be described by the OSF relation. However, at short countour separations the behaviour is more complex. Recent equations which introduce more complicated expressions and an additional length scale could describe the results very well on both the short and the long length scale. The equation of Manghi and Netz when used without adjustable parameters could capture the qualitative trend but deviated in a quantitative comparison. Better quantitative agreement within the estimated error could be obtained using three equations with one adjustable parameter: 1) the equation of Manghi and Netz; 2) the equation proposed by us in this paper; 3) the equation proposed by Cannavacciuolo and Pedersen. Two characteristic length scales can be identified in the data: the intrinsic or bare persistence length and the electrostatic persistence length. All three equations use a single parameter to describe a smooth crossover from the short-range behaviour dominated by the intrinsic stiffness of the chain to the long-range OSF-like behaviour
    corecore