10 research outputs found

    Biocompatibility of the human mesenchymal stem cells with bovine bone tissue at the cellular level in vitro

    Get PDF
    The purpose of this study was to investigate biocompatibility of the human mesenchymal stem cells with bovine bone tissue at the cellular level in vitro. Phenotypic analysis of cells was made by flow cytometry. Cells were grown on the bone for 12 days. Metabolic activity of cells was assessed with the MTS assay. The growth data were used to calculate the population doubling times. The scanning electron microscopy was used to verify the attachment of cells on the bone surface. The results were analyzed by using ANOVA test. Immunophenotypic characteristics were positive for CD105, CD90, CD73, and negative for CD34, CD45. The growth curves of stem cells of the 1st and the 2nd passages for both media, with and without, bovine bone were constructed. The increase of approximately 60% of the doubling time for mesenchymal cells co-cultivated with bovine bone tissue was observed for both passages in comparison with the control.Our study confirmed that mesenchymal stem cells are able to adhere to the bovine bone, even not being modified with bone-targeting elements. The proliferation rate and metabolic activity of cells co-cultivated with bone decrease in comparison with the control. Better survival was observed for cells of the 1st passage

    Principios en el aislamiento y cultivo de condrocitos de acuerdo a buenas prácticas de laboratorio

    Get PDF
    OBJECTIVES: The objective of the present study was to determine if chondrocytes isolated from human cartilage of five elderly patients (mean age 63) with osteoarthritis (stage 3) maintain their proliferation and chondrogenic potential. Isolation and cultivation of chondrocytes was performed according to good laboratory practice (GLP) standards. Methods: Chondrocytes were isolated from cartilage biopsy by enzymatic digestion. Cultivation of cells was performed in a controlled environment (cleanroom). Phenotype characterization of chondrocytes was achieved by flow cytometry analysis. Results: Three weeks after cultivation, polygonal structures typical of chondrocytes were observed, but spindle/fibroblast like morphology was also detected in cultured cells. Flow cytometric analysis showed that chondrocytes were positive for CD44 (98.35% ± 0.50), CD90 (97.15% ± 0.13) after first passage (P1) and the cells were negative for hematopoietic marker CD45 (0.21% ± 0.11). ConclusionS: Human articular chondrocytes obtained from five elderly patients with osteoarthritis maintained a chondrocyte phenotype and could be potentially used for autologous implantation. We have standardized the conditions for cultivation according to GLP standards to minimize the risk of in vitro cell contamination

    Principios en el aislamiento y cultivo de condrocitos de acuerdo a buenas prácticas de laboratorio

    Get PDF
    Objectives: The objective of the present study was to determine if chondrocytes isolated from human cartilage of five elderly patients (middle age 63) with osteoarthritis (stage 3) maintain their proliferation and chondrogenic potential. Isolation and cultivation of chondrocytes was performed according to good laboratory practice (GLP) standards. Methods: Chondrocytes were isolated from cartilage biopsy by enzymatic digestion. Cultivation of cells was performed in a controlled environment (cleanroom). Phenotype characterization of chondrocytes was achieved by flow cytometry analysis. Results: Three weeks after cultivation polygonal structures typical for chondrocytes were observed, but spindle/fibroblast like morphology was also detected in culture. Flow cytometric analysis showed that chondrocytes were positive for CD44 (98,35% ± 0,50), CD90 (97,15% ± 0,13) after first passage (P1) and the cells were negative for hematopoietic marker CD45 (0,21% ± 0,11). Conclusions: Human articular chondrocytes obtained from five elderly patients with osteoarthritis maintained a chondrocyte phenotype and could be potentially used for autologous implantation. We have standardized the conditions for cultivation according to GLP standards to minimize the risk of in vitro cell contamination.Objetivos: El objetivo del presente estudio era determinar si los condrocitos aislados de cinco pacientes ancianos (edad media 63 años) con artrosis (grado 3) mantienen su proliferación y potencial condrogénico. El aislamiento y cultivo de condrocitos fueron llevados a cabo de acuerdo a los estándares de buenas prácticas de laboratorio. Métodos: Los condrocitos fueron aislados de una biopsia de cartílago mediante digestión enzimática. El cultivo fue llevado a cabo en un ambiente controlado (sala blanca). La caracterización del fenotipo de los condrocitos se logró mediante análisis de citometría de flujo. Resultados: Tras tres semanas de cultivo se podían observar estructuras poligonales propias de los condrocitos, pero también se observaba morfología de tipo fibroblasto en el cultivo. El análisis de la citometría de flujo reveló que el fenotipo de los condrocitos cultivados tras el primer pasaje era positivo para CD44 (98,92%), CD90 (97,11%) y negativo para el marcador hematopoyético CD45 (0,10%). Conclusiones: Los condrocitos articulares humanos obtenidos de cinco pacientes ancianos con artrosis mantenían un fenotipo condrocitario y podrían ser potencialmente utilizados para la implantación autóloga. Las condiciones para el cultivo fueron establecidas de acuerdo a los estándares de buenas prácticas de laboratorio para así minimizar el riesgo de contaminación celular in vitro.Slovak Research and Development Agency (APVV 0684-12); VEGA grant No.1/0772/13; Centre of Excellence for Neuroregenerative Research (project ITMS No. 26220120063)

    Povrchová biokompatibilita rôznych štruktúr titánových implantátov s mezenchymálnymi kmeňovymi líniami

    No full text
    Úspešná regenerácia tkanív si vyžaduje skafoldy s mechanickou stabilitou alebo biologickou odbúrateľnosťou, drsnosťou povrchu a pórovitosťou, aby sa zabezpečilo vhodné mikroprostredie pre dostatočnú bunkovú interakciu, migráciu, proliferáciu a diferenciáciu buniek. Táto štúdia sa zaoberá návrhom, výrobou a testovaním biokompatibility titánového skafoldu zo zliatiny titánu Ti-6Al-4V. Boli testované skúšobné vzorky valcového tvaru, kde každá vzorka mala poréznu štruktúru s veľkosťami pórov 0,4 mm, 0,8 mm a 1,0 mm, ktoré boli osadené mezenchymálnymi kmeňovými bunkami získanými z chorionu (CMSCs). Cieľom štúdie bolo hodnotenie cytotoxického účinku a biokompatibility titánových skafoldov. Použitím kolorimetrického MTT testu bola sledovaná viabilita a proliferácia buniek a mikroskopicky ich morfologický tvar na Ti-6Al-4V skafoldoch. MSCs vykazovali vysokú životaschopnosť, priľnavosti k povrchom s dobrou proliferáciou

    Comparison of Selected Characteristics of SARS-CoV-2, SARS-CoV, and HCoV-NL63

    No full text
    The global pandemic known as coronavirus disease 2019 (COVID-19) was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This review article presents the taxonomy of SARS-CoV-2 coronaviruses, which have been classified as the seventh known human pathogenic coronavirus. The etiology of COVID-19 is also briefly discussed. Selected characteristics of SARS-CoV-2, SARS-CoV, and HCoV-NL63 are compared in the article. The angiotensin converting enzyme-2 (ACE-2) has been identified as the receptor for the SARS-CoV-2 viral entry. ACE2 is well-known as a counter-regulator of the renin-angiotensin system (RAAS) and plays a key role in the cardiovascular system. In the therapy of patients with COVID-19, there has been a concern about the use of RAAS inhibitors. As a result, it is hypothesized that ACE inhibitors do not directly affect ACE2 activity in clinical use. Coronaviruses are zoonotic RNA viruses. Identification of the primary causative agent of the SARS-CoV-2 is essential. Sequencing showed that the genome of the Bat CoVRaTG13 virus found in bats matches the genome of up to (96.2%) of SARS-CoV-2 virus. Sufficient knowledge of the molecular and biological mechanisms along with reliable information related to SARS-CoV-2 gives hope for a quick solution to epidemiological questions and therapeutic processes

    In Vitro Model of Human Trophoblast in Early Placentation

    No full text
    The complex process of placental implantation and development affects trophoblast progenitors and uterine cells through the regulation of transcription factors, cytokines, adhesion receptors and their ligands. Differentiation of trophoblast precursors in the trophectoderm of early ontogenesis, caused by the transcription factors, such as CDX2, TEAD4, Eomes and GATA3, leads to the formation of cytotrophoblast and syncytiotrophoblast populations. The molecular mechanisms involved in placental formation inside the human body along with the specification and differentiation of trophoblast cell lines are, mostly due to the lack of suitable cell models, not sufficiently elucidated. This review is an evaluation of current technologies, which are used to study the behavior of human trophoblasts and other placental cells, as well as their ability to represent physiological conditions both in vivo and in vitro. An in vitro 3D model with a characteristic phenotype is of great benefit for the study of placental physiology. At the same time, it provides great support for future modeling of placental disease

    Interaction between Mesenchymal Stem Cells and the Immune System in Rheumatoid Arthritis

    No full text
    Rheumatoid arthritis (RA) is an autoimmune disease that causes damage to joints. This review focuses on the possibility of influencing the disease through immunomodulation by mesenchymal stem cells (MSCs). There is an occurrence of rheumatoid factor and RA-specific autoantibodies to citrullinated proteins in most patients. Citrulline proteins have been identified in the joints of RA patients, and are considered to be the most suitable candidates for the stimulation of anti-citrulline protein antibodies production. Fibroblast-like proliferating active synoviocytes actively promote inflammation and destruction in the RA joint, in association with pro-inflammatory cells. The inflammatory process may be suppressed by MSCs, which are a population of adherent cells with the following characteristic phenotype: CD105+, CD73+, CD90+, CD45−, CD34− and HLA DR−. Following the stimulation process, MSCs are capable of immunomodulatory action through the release of bioactive molecules, as well as direct contact with the cells of the immune system. Furthermore, MSCs show the ability to suppress natural killer cell activation and dendritic cells maturation, inhibit T cell proliferation and function, and induce T regulatory cell formation. MSCs produce factors that suppress inflammatory processes, such as PGE2, TGF-β, HLA-G5, IDO, and IL-10. These properties suggest that MSCs may affect and suppress the excessive inflammation that occurs in RA. The effect of MSCs on rheumatoid arthritis has been proven to be a suitable alternative treatment thanks to successful experiments and clinical studies

    Impact of In Vitro Degradation on the Properties of Samples Produced by Additive Production from PLA/PHB-Based Material and Ceramics

    No full text
    The present study deals with preparing a polymer-based material with incorporated ceramics and monitoring changes in properties after in vitro natural degradation. The developed material is a mixture of polymers of polylactic acid and polyhydroxybutyrate in a ratio of 85:15. Ceramic was incorporated into the prepared material, namely 10% hydroxyapatite and 10% tricalcium phosphate of the total volume. The material was processed into a filament form, and types of solid and porous samples were prepared using additive technology. These samples were immersed in three different solutions: physiological solution, phosphate-buffered saline, and Hanks’ solution. Under constant laboratory conditions, changes in solution pH, material absorption, weight loss, changes in mechanical properties, and surface morphology were monitored for 170 days. The average value of the absorption of the solid sample was 7.07%, and the absorption of the porous samples was recorded at 8.33%, which means a difference of 1.26%. The least change in pH from the reference value of 7.4 was noted with the phosphate-buffered saline solution. Computed tomography was used to determine the cross-section of the samples. The obtained data were used to calculate the mechanical properties of materials after degradation. The elasticity modulus for both the full and porous samples degraded in Hanks’ solution (524.53 ± 13.4 MPa) has the smallest deviation from the non-degraded reference sample (536.21 ± 22.69 MPa)
    corecore