2 research outputs found

    Cellular dynamics and molecular mechanisms underlying the 3D organization and connectivity of the statoacoustic ganglion

    No full text
    The statoacoustic ganglion (SAG) is a complex 3D structure composed by neurons in charge of transmitting the information from inner ear hair cells to the CNS. During development, SAG copes with otic tissue demands to maintain functionality. However, SAG development in coordination with otic development has not been addressed in detail. We use high resolution confocal imaging of otic neuroblasts (NB), photoconversion, photoablation, transgenic lines, CRISPR/Cas9 and Cas13 to address SAG development at the molecular and cellular levels. We find a population of pioneer SAG neurons specified outside the otic placode, which play an attracting role over delaminating NB affecting its coalescence. NB from the otic epithelium delaminate in an EMT-like manner, and non-collectively and actively migrate depending on RhoGTPases to establish the anterior SAG lobe. Followingly, NB crawl onto pioneer axons to form the posterior SAG lobe. Lack of both pioneer SAG neurons and pioneer axons alters SAG shape. Finally, we uncover the cell adhesion molecule Cntn2 and the chemokine Cxcl14 as two new molecules required for correct pioneer axon targeting to HC and posterior lobe formation. We confirm that HC and neurotrophin signaling is not required for directed axon targeting but stabilization and neuronal survival. In conclusion, SAG development is a complex process in which several mechanisms interplay, prime and scaffold further SAG developmental steps.El gangli estatoac煤stic (SAG) 茅s una estructura 3D altament complexa formada per neurones que transmeten la informaci贸 rebuda de les c猫l路lules ciliades (HC) del l鈥檕茂da interna al sistema nervi贸s central (CNS). Durant el desenvolupament, el SAG s鈥檕rganitza en coordinaci贸 amb l鈥檕茂da interna per tal de mantenir la seva funcionalitat. No obstant aix貌, es t茅 un lleu coneixement com aquest s鈥檕rganitza en 3D. Per tal d鈥檃nalitzar a nivell molecular i cel路lular la formaci贸 del SAG, hem emprat microscopia confocal d鈥檃lta resoluci贸 amb marcatges de neuroblasts (NB) individuals, fotoconversi贸, fotoablaci贸, CRISPR/Cas9 i Cas13. Aqu铆 descrivim el paper de les neurones pioneres del SAG, que atrauen els NB que delaminen de l鈥檈piteli 貌tic. Els NB delaminen fora de l鈥檈piteli seguint un proc茅s EMT. Un cop fora, els NB migren activament dependent de RhoGTPases i no col路lectiva per tal de formar un l貌bul anterior del SAG. Seguidament, els NB migren sobre axons pioners per tal de formar un l貌bul posterior del SAG. La manca de neurones pioneres i d鈥檃xons pioners altera la formaci贸 del SAG. Finalment, hem descobert que la mol猫cula d鈥檃dhesi贸 Cntn2 i la quemoquina Cxcl14 son relevants per a la correcta extensi贸 i orientaci贸 dels axons pioners a les HC de l鈥檕茂da i la formaci贸 del l貌bul posterior. Confirmem que les HC i la senyalitzaci贸 per neurotrofines no 茅s requerida per a la correcta formaci贸 dels axons pioners, per貌 s铆 per a estabilitzar-los i promoure la superviv猫ncia neuronal. En conclusi贸, l鈥檈studi proporciona nova informaci贸 sobre els comportaments que permeten als NB establir un gangli estructurat i les claus moleculars implicades en la formaci贸 de connexions neuronals amb l鈥檕茂da interna

    Pioneer statoacoustic neurons guide neuroblast behaviour during otic ganglion assembly

    No full text
    Cranial ganglia are aggregates of sensory neurons that mediate distinct types of sensation. The statoacoustic ganglion (SAG) develops into several lobes that are spatially arranged to connect appropriately with hair cells of the inner ear. To investigate the cellular behaviours involved in the 3D organization of the SAG, we use high-resolution confocal imaging of single-cell, labelled zebrafish neuroblasts (NBs), photoconversion, photoablation, and genetic perturbations. We show that otic NBs delaminate out of the otic epithelium in an epithelial-mesenchymal transition-like manner, rearranging apical polarity and primary cilia proteins. We also show that, once delaminated, NBs require RhoGTPases in order to perform active migration. Furthermore, tracking of recently delaminated NBs revealed their directed migration and coalescence around a small population of pioneer SAG neurons. These pioneer SAG neurons, not from otic placode origin, populate the coalescence region before otic neurogenesis begins and their ablation disrupts delaminated NB migratory pathways, consequentially affecting SAG shape. Altogether, this work shows for the first time the role of pioneer SAG neurons in orchestrating SAG development
    corecore