697 research outputs found
Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets
<p>Abstract</p> <p>Background:</p> <p><it>Mycobacterium tuberculosis </it>continues to be a major pathogen in the third world, killing almost 2 million people a year by the most recent estimates. Even in industrialized countries, the emergence of multi-drug resistant (MDR) strains of tuberculosis hails the need to develop additional medications for treatment. Many of the drugs used for treatment of tuberculosis target metabolic enzymes. Genome-scale models can be used for analysis, discovery, and as hypothesis generating tools, which will hopefully assist the rational drug development process. These models need to be able to assimilate data from large datasets and analyze them.</p> <p>Results:</p> <p>We completed a bottom up reconstruction of the metabolic network of <it>Mycobacterium tuberculosis </it>H37Rv. This functional <it>in silico </it>bacterium, <it>iNJ</it>661, contains 661 genes and 939 reactions and can produce many of the complex compounds characteristic to tuberculosis, such as mycolic acids and mycocerosates. We grew this bacterium <it>in silico </it>on various media, analyzed the model in the context of multiple high-throughput data sets, and finally we analyzed the network in an 'unbiased' manner by calculating the Hard Coupled Reaction (HCR) sets, groups of reactions that are forced to operate in unison due to mass conservation and connectivity constraints.</p> <p>Conclusion:</p> <p>Although we observed growth rates comparable to experimental observations (doubling times ranging from about 12 to 24 hours) in different media, comparisons of gene essentiality with experimental data were less encouraging (generally about 55%). The reasons for the often conflicting results were multi-fold, including gene expression variability under different conditions and lack of complete biological knowledge. Some of the inconsistencies between <it>in vitro </it>and <it>in silico </it>or <it>in vivo </it>and <it>in silico </it>results highlight specific loci that are worth further experimental investigations. Finally, by considering the HCR sets in the context of known drug targets for tuberculosis treatment we proposed new alternative, but equivalent drug targets.</p
The RR Lyrae Distance Scale
We review seven methods of measuring the absolute magnitude M_V of RR Lyrae
stars in light of the Hipparcos mission and other recent developments. We focus
on identifying possible systematic errors and rank the methods by relative
immunity to such errors. For the three most robust methods, statistical
parallax, trigonometric parallax, and cluster kinematics, we find M_V (at
[Fe/H] = -1.6) of 0.77 +/- 0.13, 0.71 +/- 0.15, 0.67 +/- 0.10. These methods
cluster consistently around 0.71 +/- 0.07. We find that Baade-Wesselink and
theoretical models both yield a broad range of possible values (0.45-0.70 and
0.45-0.65) due to systematic uncertainties in the temperature scale and input
physics. Main-sequence fitting gives a much brighter M_V = 0.45 +/- 0.04 but
this may be due to a difference in the metallicity scales of the cluster giants
and the calibrating subdwarfs. White-dwarf cooling-sequence fitting gives 0.67
+/- 0.13 and is potentially very robust, but at present is too new to be fully
tested for systematics. If the three most robust methods are combined with
Walker's mean measurement for 6 LMC clusters, V_{0,LMC} = 18.98 +/- 0.03 at
[Fe/H] = -1.9, then mu_{LMC} = 18.33 +/- 0.08.Comment: Invited review article to appear in: `Post-Hipparcos Cosmic Candles',
A. Heck & F. Caputo (Eds), Kluwer Academic Publ., Dordrecht, in press. 21
pages including 1 table; uses Kluwer's crckapb.sty LaTeX style file, enclose
Precision Measurement of the Mass of the h_c(1P1) State of Charmonium
A precision measurement of the mass of the h_c(1P1) state of charmonium has
been made using a sample of 24.5 million psi(2S) events produced in e+e-
annihilation at CESR. The reaction used was psi(2S) -> pi0 h_c, pi0 -> gamma
gamma, h_c -> gamma eta_c, and the reaction products were detected in the
CLEO-c detector.
Data have been analyzed both for the inclusive reaction and for the exclusive
reactions in which eta_c decays are reconstructed in fifteen hadronic decay
channels. Consistent results are obtained in the two analyses. The averaged
results of the present measurements are M(h_c)=3525.28+-0.19 (stat)+-0.12(syst)
MeV, and B(psi(2S) -> pi0 h_c)xB(h_c -> gamma eta_c)= (4.19+-0.32+-0.45)x10^-4.
Using the 3PJ centroid mass, Delta M_hf(1P)= - M(h_c) =
+0.02+-0.19+-0.13 MeV.Comment: 9 pages, available through http://www.lns.cornell.edu/public/CLNS/,
submitted to PR
Precision Measurement of B(D+ -> mu+ nu) and the Pseudoscalar Decay Constant fD+
We measure the branching ratio of the purely leptonic decay of the D+ meson
with unprecedented precision as B(D+ -> mu+ nu) = (3.82 +/- 0.32 +/-
0.09)x10^(-4), using 818/pb of data taken on the psi(3770) resonance with the
CLEO-c detector at the CESR collider. We use this determination to derive a
value for the pseudoscalar decay constant fD+, combining with measurements of
the D+ lifetime and assuming |Vcd| = |Vus|. We find fD+ = (205.8 +/- 8.5 +/-
2.5) MeV. The decay rate asymmetry [B(D+ -> mu+ nu)-B(D- -> mu- nu)]/[B(D+ ->
mu+ nu)+B(D- -> mu- nu)] = 0.08 +/- 0.08, consistent with no CP violation. We
also set 90% confidence level upper limits on B(D+ -> tau+ nu) < 1.2x10^(-3)
and B(D+ -> e+ nu) < 8.8x10^(-6).Comment: 24 pages, 11 figures and 6 tables, v2 replaced some figure vertical
axis scales, v3 corrections from PRD revie
J/psi and psi(2S) Radiative Transitions to eta_c
Using 24.5 million psi(2S) decays collected with the CLEO-c detector at CESR
we present the most precise measurements of magnetic dipole transitions in the
charmonium system. We measure B(psi(2S)->gamma eta_c) =
(4.32+/-0.16+/-0.60)x10^-3, B(J/psi->gamma eta_c)/B(psi(2S)->gamma eta_c) =
4.59+/-0.23+/-0.64, and B(J/psi->gamma eta_c) = (1.98+/-0.09+/-0.30)%. We
observe a distortion in the eta_c line shape due to the photon-energy
dependence of the magnetic dipole transition rate. We find that measurements of
the eta_c mass are sensitive to the line shape, suggesting an explanation for
the discrepancy between measurements of the eta_c mass in radiative transitions
and other production mechanisms.Comment: 11 pages, 3 figure
Inclusive chi_bJ(nP) Decays to D0 X
Using Upsilon(2S) and Upsilon(3S) data collected with the CLEO III detector
we have searched for decays of chi_bJ to final states with open charm. We fully
reconstruct D0 mesons with p_D0 > 2.5 GeV/c in three decay modes (K-pi+,
K-pi+pi0, and K-pi-pi+pi+) in coincidence with radiative transition photons
that tag the production of one of the chi_bJ(nP) states. We obtain significant
signals for the two J=1 states. Recent NRQCD calculations of chi_{bJ}(nP) --> c
cbar X depend on one non-perturbative parameter per chi_bJ triplet. The
extrapolation from the observed D0 X rate over a limited momentum range to a
full c cbar X rate also depends on these same parameters. Using our data to fit
for these parameters, we extract results which agree well with NRQCD
predictions, confirming the expectation that charm production is largest for
the J=1 states. In particular, for J=1, our results are consistent with c cbar
g accounting for about one-quarter of all hadronic decays.Comment: Version 2 updates include corrections to important errors in Table V
and VII column headers which summarize results, and additional minor edits.
17 pages, available through http://www.lns.cornell.edu/public/CLNS
Politicizing food security governance through participation: opportunities and opposition
Since the 2007/08 food price crisis there has been a proliferation of multi-stakeholder processes (MSPs) devoted to bringing diverse perspectives together to inform and improve food security policy. While much of the literature highlights the positive contributions to be gained from an opening-up of traditionally state-led processes, there is a strong critique emerging to show that, in many instances, MSPs have de-politicizing effects. In this paper, we scrutinize MSPs in relation to de-politicization. We argue that re-building sustainable and just food systems requires alternative visions that can best be made visible through politicized policy processes. Focusing on three key conditions of politicization, we examine the UN Committee on World Food Security as a MSP where we see a process of politicization playing out through the endorsement of the âmost-affectedâ principle, which is in turn being actively contested by traditionally powerful actors. We conclude that there is a need to implement and reinforce mechanisms that deliberately politicize participation in MSPs, notably by clearly distinguishing between states and other stakeholders, as well as between categories of non-state actors.</p
Measurement of the Absolute Branching Fraction of D_s^+ --> tau^+ nu_tau Decay
Using a sample of tagged D_s decays collected near the D^*_s D_s peak
production energy in e+e- collisions with the CLEO-c detector, we study the
leptonic decay D^+_s to tau^+ nu_tau via the decay channel tau^+ to e^+ nu_e
bar{nu}_tau. We measure B(D^+_s to tau^+ nu_tau) = (6.17 +- 0.71 +- 0.34) %,
where the first error is statistical and the second systematic. Combining this
result with our measurements of D^+_s to mu^+ nu_mu and D^+_s to tau^+ nu_tau
(via tau^+ to pi^+ bar{nu}_tau), we determine f_{D_s} = (274 +- 10 +- 5) MeV.Comment: 9 pages, postscript also available through
http://www.lns.cornell.edu/public/CLNS/2007/, revise
Massive stars as thermonuclear reactors and their explosions following core collapse
Nuclear reactions transform atomic nuclei inside stars. This is the process
of stellar nucleosynthesis. The basic concepts of determining nuclear reaction
rates inside stars are reviewed. How stars manage to burn their fuel so slowly
most of the time are also considered. Stellar thermonuclear reactions involving
protons in hydrostatic burning are discussed first. Then I discuss triple alpha
reactions in the helium burning stage. Carbon and oxygen survive in red giant
stars because of the nuclear structure of oxygen and neon. Further nuclear
burning of carbon, neon, oxygen and silicon in quiescent conditions are
discussed next. In the subsequent core-collapse phase, neutronization due to
electron capture from the top of the Fermi sea in a degenerate core takes
place. The expected signal of neutrinos from a nearby supernova is calculated.
The supernova often explodes inside a dense circumstellar medium, which is
established due to the progenitor star losing its outermost envelope in a
stellar wind or mass transfer in a binary system. The nature of the
circumstellar medium and the ejecta of the supernova and their dynamics are
revealed by observations in the optical, IR, radio, and X-ray bands, and I
discuss some of these observations and their interpretations.Comment: To be published in " Principles and Perspectives in Cosmochemistry"
Lecture Notes on Kodai School on Synthesis of Elements in Stars; ed. by Aruna
Goswami & Eswar Reddy, Springer Verlag, 2009. Contains 21 figure
- âŠ