50 research outputs found

    Public involvement in research about environmental change and health: A case study

    Get PDF
    This is the final version. Available on open access from SAGE Publications via the DOI in this recordInvolving and engaging the public are crucial for effective prioritisation, dissemination and implementation of research about the complex interactions between environments and health. Involvement is also important to funders and policy makers who often see it as vital for building trust and justifying the investment of public money. In public health research, ‘the public’ can seem an amorphous target for researchers to engage with, and the short-term nature of research projects can be a challenge. Technocratic and pedagogical approaches have frequently met with resistance, so public involvement needs to be seen in the context of a history which includes contested truths, power inequalities and political activism. It is therefore vital for researchers and policy makers, as well as public contributors, to share best practice and to explore the challenges encountered in public involvement and engagement. This article presents a theoretically informed case study of the contributions made by the Health and Environment Public Engagement Group to the work of the National Institute for Health Research (NIHR) Health Protection Research Unit in Environmental Change and Health (HPRU-ECH). We describe how Health and Environment Public Engagement Group has provided researchers in the HPRU-ECH with a vehicle to support access to public views on multiple aspects of the research work across three workshops, discussion of ongoing research issues at meetings and supporting dissemination to local government partners, as well as public representation on the HPRU-ECH Advisory Board. We conclude that institutional support for standing public involvement groups can provide conduits for connecting public with policy makers and academic institutions. This can enable public involvement and engagement, which would be difficult, if not impossible, to achieve in individual short-term and unconnected research projects.National Institute for Health Research (NIHR

    Electroweak Symmetry Breaking in the DSSM

    Full text link
    We study the theoretical and phenomenological consequences of modifying the Kahler potential of the MSSM two Higgs doublet sector. Such modifications naturally arise when the Higgs sector mixes with a quasi-hidden conformal sector, as in some F-theory GUT models. In the Delta-deformed Supersymmetric Standard Model (DSSM), the Higgs fields are operators with non-trivial scaling dimension 1 < Delta < 2. The Kahler metric is singular at the origin of field space due to the presence of quasi-hidden sector states which get their mass from the Higgs vevs. The presence of these extra states leads to the fact that even as Delta approaches 1, the DSSM does not reduce to the MSSM. In particular, the Higgs can naturally be heavier than the W- and Z-bosons. Perturbative gauge coupling unification, a large top quark Yukawa, and consistency with precision electroweak can all be maintained for Delta close to unity. Moreover, such values of Delta can naturally be obtained in string-motivated constructions. The quasi-hidden sector generically contains states charged under SU(5)_GUT as well as gauge singlets, leading to a rich, albeit model-dependent, collider phenomenology.Comment: v3: 40 pages, 3 figures, references added, typos correcte

    Instrumentation for fluorescence lifetime measurement using photon counting

    Get PDF
    We describe the evolution of HORIBA Jobin Yvon IBH Ltd, and its time-correlated single-photon counting (TCSPC) products, from university research beginnings through to its present place as a market leader in fluorescence lifetime spectroscopy. The company philosophy is to ensure leading-edge research capabilities continue to be incorporated into instruments in order to meet the needs of the diverse range of customer applications, which span a multitude of scientific and engineering disciplines. We illustrate some of the range of activities of a scientific instrument company in meeting this goal and highlight by way of an exemplar the performance of the versatile DeltaFlex instrument in measuring fluorescence lifetimes. This includes resolving fluorescence lifetimes down to 5 ps, as frequently observed in energy transfer, nanoparticle metrology with sub-nanometre resolution and measuring a fluorescence lifetime in as little as 60 μs for the study of transient species and kinetics

    A Predictive Model of Intein Insertion Site for Use in the Engineering of Molecular Switches

    Get PDF
    Inteins are intervening protein domains with self-splicing ability that can be used as molecular switches to control activity of their host protein. Successfully engineering an intein into a host protein requires identifying an insertion site that permits intein insertion and splicing while allowing for proper folding of the mature protein post-splicing. By analyzing sequence and structure based properties of native intein insertion sites we have identified four features that showed significant correlation with the location of the intein insertion sites, and therefore may be useful in predicting insertion sites in other proteins that provide native-like intein function. Three of these properties, the distance to the active site and dimer interface site, the SVM score of the splice site cassette, and the sequence conservation of the site showed statistically significant correlation and strong predictive power, with area under the curve (AUC) values of 0.79, 0.76, and 0.73 respectively, while the distance to secondary structure/loop junction showed significance but with less predictive power (AUC of 0.54). In a case study of 20 insertion sites in the XynB xylanase, two features of native insertion sites showed correlation with the splice sites and demonstrated predictive value in selecting non-native splice sites. Structural modeling of intein insertions at two sites highlighted the role that the insertion site location could play on the ability of the intein to modulate activity of the host protein. These findings can be used to enrich the selection of insertion sites capable of supporting intein splicing and hosting an intein switch

    The anti-vaccination movement and resistance to allergen-immunotherapy: a guide for clinical allergists

    Get PDF
    Despite over a century of clinical use and a well-documented record of efficacy and safety, a growing minority in society questions the validity of vaccination and fear that this common public health intervention is the root-cause of severe health problems. This article questions whether growing public anti-vaccine sentiments might have the potential to spill-over into other therapies distinct from vaccination, namely allergen-immunotherapy. Allergen-immunotherapy shares certain medical vernacular with vaccination (e.g., allergy shots, allergy vaccines), and thus may become "guilty by association" due to these similarities. Indeed, this article demonstrates that anti-vaccine websites have begun unduly discrediting this allergy treatment regimen. Following an explanation of the anti-vaccine movement, the article aims to provide guidance on how clinicians can respond to patient fears towards allergen-immunotherapy in the clinical setting. This guide focuses on the provision of reliable information to patients in order to dispel misconceived associations between vaccination and allergen-immunotherapy, and the discussion of the risks and benefits of both therapies in order to assist patients in making autonomous decisions about their choice of allergy treatment

    Immunization with a Borrelia burgdorferi BB0172-Derived Peptide Protects Mice against Lyme Disease

    Get PDF
    Lyme disease is the most prevalent arthropod borne disease in the US and it is caused by the bacterial spirochete Borrelia burgdorferi (Bb), which is acquired through the bite of an infected Ixodes tick. Vaccine development efforts focused on the von Willebrand factor A domain of the borrelial protein BB0172 from which four peptides (A, B, C and D) were synthesized and conjugated to Keyhole Limpet Hemocyanin, formulated in Titer Max® adjuvant and used to immunize C3H/HeN mice subcutaneously at days 0, 14 and 21. Sera were collected to evaluate antibody responses and some mice were sacrificed for histopathology to evaluate vaccine safety. Twenty-eight days post-priming, protection was evaluated by needle inoculation of half the mice in each group with 103 Bb/mouse, whereas the rest were challenged with 105Bb/mouse. Eight weeks post-priming, another four groups of similarly immunized mice were challenged using infected ticks. In both experiments, twenty-one days post-challenge, the mice were sacrificed to determine antibody responses, bacterial burdens and conduct histopathology. Results showed that only mice immunized with peptide B were protected against challenge with Bb. In addition, compared to the other the treatment groups, peptide B-immunized mice showed very limited inflammation in the heart and joint tissues. Peptide B-specific antibody titers peaked at 8 weeks post-priming and surprisingly, the anti-peptide B antibodies did not cross-react with Bb lysates. These findings strongly suggest that peptide B is a promising candidate for the development of a new DIVA vaccine (Differentiate between Infected and Vaccinated Animals) for protection against Lyme disease.The open access fee for this work was funded through the Texas A&M University Open Access to Knowledge (OAK) Fund

    Vaccinomics: Current Findings, Challenges and Novel Approaches for Vaccine Development

    No full text
    Recent years have witnessed a growing interest in a field of vaccinology that we have named vaccinomics. The overall idea behind vaccinomics is to identify genetic and other mechanisms and pathways that determine immune responses, and thereby provide new candidate vaccine approaches. Considerable data show that host genetic polymorphisms act as important determinants of innate and adaptive immunity to vaccines. This review highlights examples of the role of immunogenetics and immunogenomics in understanding immune responses to vaccination, which are highly variable across the population. The influence of HLA genes, non-HLA, and innate genes in inter-individual variations in immune responses to viral vaccines are examined using population-based gene/SNP association studies. The ability to understand relationships between immune response gene variants and vaccine-specific immunity may assist in designing new vaccines. At the same time, application of state-of-the-art next-generation sequencing technology (and bioinformatics) is desired to provide new genetic information and its relationship to the immune response
    corecore