5 research outputs found

    Maintenance of influenza A viruses and antibody response in mallards (Anas platyrhynchos) sampled during the non-breeding season in Alaska

    No full text
    Prevalence of influenza A virus (IAV) infections in northern-breeding waterfowl has previously been reported to reach an annual peak during late summer or autumn; however, little is known about IAV infection dynamics in waterfowl populations persisting at high-latitude regions such as Alaska, during winter. We captured mallards (Anas platyrhynchos) throughout the non-breeding season (August-April) of 2012-2015 in Fairbanks and Anchorage, the two largest cities in Alaska, to assess patterns of IAV infection and antibody production using molecular methods and a standard serologic assay. In addition, we used virus isolation, genetic sequencing, and a virus microneutralization assay to characterize viral subtypes and to evaluate the immune response of mallards captured on multiple occasions through time. We captured 923 mallards during three successive sampling years: Fairbanks in 2012/13 and 2013/14, and Anchorage in 2014/15. Prevalence varied by age, season, and year/site with high and relatively stable estimates throughout the non-breeding season. Infected birds were detected in all locations/seasons except early-winter in Fairbanks during 2013/14. IAVs with 17 combinations of hemagglutinin (H1-5, H7-9, H11, H12) and neuraminidase (N1-6, N8, N9) subtypes were isolated. Antibodies to IAVs were detected throughout autumn and winter for all sampling locations and years, however, seroprevalence was higher among adults and varied among years. Mallards exhibited individual heterogeneity with regard to immune response, providing instances of both seroconversion and seroreversion to detected viral subtypes. The probability that an individual transitioned from one serostatus to another varied by age, with juvenile mallards having higher rates of seroconversion and seroreversion than adults. Our study provides evidence that a diversity of IAVs circulate in populations of mallards wintering at urban locations in Alaska, and we suggest waterfowl wintering at high-latitudes may play an important role in maintenance of viruses across breeding seasons

    Effects of ecological gradients on tropical avian haemoparasites

    No full text
    Diego Santiago-Alarcón y Alfonso Marzal (eds.); Primera Edición; 910 páginasThis chapter provides a brief overview of how natural gradients (e.g., latitude, altitude, and landscape gradients) affect host–parasite interactions involving blood parasites in wildlife and how biotic and abiotic factors act as disruptors. These gradients have a direct impact on prevalence, parasitemia, and the observed relationships between parasites and hosts. In the tropical zone, altitudinal gradients imitate the behavior of the latitudinal gradient, since low temperatures are common at both higher altitudes and higher latitudes. Temperature is one of the determining factors of the diversity of vectors, hosts, and vegetation that affect parasite transmission cycles. Furthermore, within landscapes, there may be many types of elements producing gradients. For instance, increasing distance from water sources, anthropogenic degradation, and even sequential stages of succession and interspersion of vegetation communities would affect host–parasite–vector interactions. However, such effects do not always operate in the same direction because responses are context sensitive. We also discuss the importance of an integrative diagnosis, using microscopic and molecular approaches, which allow better approximations and analyses at the parasite species level, thus producing stronger conclusions. The same detail is recommended for studies on the hematophagous fauna of potential vectors. The life cycle of different parasite species has its own set of characteristics, and it corresponds to the researchers to unravel the puzzle and to avoid unwarranted generalizations.The work of SM is supported by project PGC2018-097426-B-C21 from the Spanish Ministry of Science, Innovation, and Universities. The work of LC-V was funded by the National Council for Science and Technology of Mexico (CONACYT; grants SEP-CB-2012-1-183377, and PDCPN-2015-1-1628).Peer reviewe
    corecore