1,902 research outputs found

    Deep Learning for Mobile Mental Health: Challenges and recent advances

    Get PDF
    Mental health plays a key role in everyone’s day-to-day lives, impacting our thoughts, behaviours, and emotions. Also, over the past years, given its ubiquitous and affordable characteristics, the use of smartphones and wearable devices has grown rapidly and provided support within all aspects of mental health research and care, spanning from screening and diagnosis to treatment and monitoring, and attained significant progress to improve remote mental health interventions. While there are still many challenges to be tackled in this emerging cross-discipline research field, such as data scarcity, lack of personalisation, and privacy concerns, it is of primary importance that innovative signal processing and deep learning techniques are exploited. Particularly, recent advances in deep learning can help provide the key enabling technology for the development of the next-generation user-centric mobile mental health applications. In this article, we first brief basic principles associated with mobile device-based mental health analysis, review the main system components, and highlight conventional technologies involved. Next, we describe several major challenges and various deep learning technologies that have potentials for a strong contribution in dealing with these challenges, respectively. Finally, we discuss other remaining problems which need to be addressed via research collaboration across multiple disciplines.This paper has been partially funded by the Bavarian Ministry of Science and Arts as part of the Bavarian Research Association ForDigitHealth, the National Natural Science Foundation of China (Grant No. 62071330, 61702370), and the Key Program of the National Natural Science Foundation of China (Grant No: 61831022)

    Comment on Higgs Inflation and Naturalness

    Get PDF
    We rebut the recent claim (arXiv:0912.5463) that Einstein-frame scattering in the Higgs inflation model is unitary above the cut-off energy Lambda ~ Mp/xi. We show explicitly how unitarity problems arise in both the Einstein and Jordan frames of the theory. In a covariant gauge they arise from non-minimal Higgs self-couplings, which cannot be removed by field redefinitions because the target space is not flat. In unitary gauge, where there is only a single scalar which can be redefined to achieve canonical kinetic terms, the unitarity problems arise through non-minimal Higgs-gauge couplings.Comment: 5 pages, 1 figure V3: Journal Versio

    SEWA DB: A rich database for audio-visual emotion and sentiment research in the wild

    Get PDF
    Natural human-computer interaction and audio-visual human behaviour sensing systems, which would achieve robust performance in-the-wild are more needed than ever as digital devices are becoming indispensable part of our life more and more. Accurately annotated real-world data are the crux in devising such systems. However, existing databases usually consider controlled settings, low demographic variability, and a single task. In this paper, we introduce the SEWA database of more than 2000 minutes of audio-visual data of 398 people coming from six cultures, 50% female, and uniformly spanning the age range of 18 to 65 years old. Subjects were recorded in two different contexts: while watching adverts and while discussing adverts in a video chat. The database includes rich annotations of the recordings in terms of facial landmarks, facial action units (FAU), various vocalisations, mirroring, and continuously valued valence, arousal, liking, agreement, and prototypic examples of (dis)liking. This database aims to be an extremely valuable resource for researchers in affective computing and automatic human sensing and is expected to push forward the research in human behaviour analysis, including cultural studies. Along with the database, we provide extensive baseline experiments for automatic FAU detection and automatic valence, arousal and (dis)liking intensity estimation

    Glycogen Synthase Kinase 3 Beta (GSK3ÎČ) Phosphorylates the RNAase III Enzyme Drosha at S300 and S302

    Get PDF
    The canonical microRNA (miRNA) pathway commences with the enzymatic cleavage of the primary gene transcript (pri-miRNA) by the RNAase III enzyme Drosha in the nucleus into shorter pre-miRNA species that are subsequently exported to the cytoplasm for further processing into shorter, mature miRNA molecules. Using a series of reporter constructs, we have previously demonstrated that phosphorylation of Drosha at Ser 300 and 302 was required for its nuclear localization. Here, we identify GSK3ÎČ as the culprit kinase. We demonstrate that Drosha is unable to selectively localize to the nucleus in cells deficient in GSK3ÎČ. These findings expand the substrate base of GSK3ÎČ to include a central component of the miRNA biogenesis pathway

    Strong Double Higgs Production at the LHC

    Get PDF
    The hierarchy problem and the electroweak data, together, provide a plausible motivation for considering a light Higgs emerging as a pseudo-Goldstone boson from a strongly-coupled sector. In that scenario, the rates for Higgs production and decay differ significantly from those in the Standard Model. However, one genuine strong coupling signature is the growth with energy of the scattering amplitudes among the Goldstone bosons, the longitudinally polarized vector bosons as well as the Higgs boson itself. The rate for double Higgs production in vector boson fusion is thus enhanced with respect to its negligible rate in the SM. We study that reaction in pp collisions, where the production of two Higgs bosons at high pT is associated with the emission of two forward jets. We concentrate on the decay mode hh -> WW^(*)WW^(*) and study the semi-leptonic decay chains of the W's with 2, 3 or 4 leptons in the final states. While the 3 lepton final states are the most relevant and can lead to a 3 sigma signal significance with 300 fb^{-1} collected at a 14 TeV LHC, the two same-sign lepton final states provide complementary information. We also comment on the prospects for improving the detectability of double Higgs production at the foreseen LHC energy and luminosity upgrades.Comment: 54 pages, 26 figures. v2: typos corrected, a few comments and one table added. Version published in JHE

    Higgs Physics: Theory

    Full text link
    I review the theoretical aspects of the physics of Higgs bosons, focusing on the elements that are relevant for the production and detection at present hadron colliders. After briefly summarizing the basics of electroweak symmetry breaking in the Standard Model, I discuss Higgs production at the LHC and at the Tevatron, with some focus on the main production mechanism, the gluon-gluon fusion process, and summarize the main Higgs decay modes and the experimental detection channels. I then briefly survey the case of the minimal supersymmetric extension of the Standard Model. In a last section, I review the prospects for determining the fundamental properties of the Higgs particles once they have been experimentally observed.Comment: 21 pages, 15 figures. Talk given at the XXV International Symposium on Lepton Photon Interactions at High Energies (Lepton Photon 11), 22-27 August 2011, Mumbai, Indi

    Ross-Konno and Endocardial Fibroelastosis Resection After Hybrid Stage I Palliation in Infancy: Successful Staged Left-Ventricular Rehabilitation and Conversion to Biventricular Circulation After Fetal Diagnosis of Aortic Stenosis

    Get PDF
    We report a patient who presented during fetal life with severe aortic stenosis, left-ventricular dysfunction, and endocardial fibroelastosis (evolving hypoplastic left heart syndrome). Management involved in utero and postnatal balloon aortic valvuloplasty for partial relief of obstruction and early postnatal hybrid stage I palliation until recovery of left-ventricular systolic function had occurred. The infant subsequently had successful conversion to a biventricular circulation by combining resection of endocardial fibroelastosis with single-stage Ross-Konno, aortic arch reconstruction, hybrid takedown, and pulmonary artery reconstruction

    Electroweak Symmetry Breaking in the DSSM

    Full text link
    We study the theoretical and phenomenological consequences of modifying the Kahler potential of the MSSM two Higgs doublet sector. Such modifications naturally arise when the Higgs sector mixes with a quasi-hidden conformal sector, as in some F-theory GUT models. In the Delta-deformed Supersymmetric Standard Model (DSSM), the Higgs fields are operators with non-trivial scaling dimension 1 < Delta < 2. The Kahler metric is singular at the origin of field space due to the presence of quasi-hidden sector states which get their mass from the Higgs vevs. The presence of these extra states leads to the fact that even as Delta approaches 1, the DSSM does not reduce to the MSSM. In particular, the Higgs can naturally be heavier than the W- and Z-bosons. Perturbative gauge coupling unification, a large top quark Yukawa, and consistency with precision electroweak can all be maintained for Delta close to unity. Moreover, such values of Delta can naturally be obtained in string-motivated constructions. The quasi-hidden sector generically contains states charged under SU(5)_GUT as well as gauge singlets, leading to a rich, albeit model-dependent, collider phenomenology.Comment: v3: 40 pages, 3 figures, references added, typos correcte

    Pure-glue hidden valleys through the Higgs portal

    Full text link
    We consider the possibility that the Higgs boson can act as a link to a hidden sector in the context of pure-glue hidden valley models. In these models the standard model is weakly coupled, through loops of heavy messengers fields, to a hidden sector whose low energy dynamics is described by a pure-Yang-Mills theory. Such a hidden sector contains several metastable hidden glueballs. In this work we shall extend earlier results on hidden valleys to include couplings of the messengers to the standard model Higgs sector. The effective interactions at one-loop couple the hidden gluons to the standard model particles through the Higgs sector. These couplings in turn induce hidden glueball decays to fermion pairs, or cascade decays with multiple Higgs emission. The presence of effective operators of different mass dimensions, often competing with each other, together with a great diversity of states, leads to a great variability in the lifetimes and decay modes of the hidden glueballs. We find that most of the operators considered in this paper are not heavily constrained by precision electroweak physics, therefore leaving plenty of room in the parameter space to be explored by the future experiments at the LHC.Comment: 44 pages, 16 figures. Major revision for JHEP, corrected an error in Eq. 5.1, comments adde

    LHC diphoton Higgs signal and top quark forward-backward asymmetry in quasi-inert Higgs doublet model

    Full text link
    In the quasi-inert Higgs doublet model, we study the LHC diphoton rate for a standard model-like Higgs boson and the top quark forward-backward asymmetry at Tevatron. Taking into account the constraints from the vacuum stability, unitarity, electroweak precision tests, flavor physics and the related experimental data of top quark, we find that compared with the standard model prediction, the diphoton rate of Higgs boson at LHC can be enhanced due to the light charged Higgs contributions, while the measurement of the top quark forward-backward asymmetry at Tevatron can be explained to within 1σ1\sigma due to the non-standard model neutral Higgs bosons contributions. Finally, the correlations between the two observables are discussed.Comment: 14 pages, 5 figues. Version to appear in JHEP, some references adde
    • 

    corecore