168 research outputs found

    Anyons in a weakly interacting system

    Full text link
    We describe a theoretical proposal for a system whose excitations are anyons with the exchange phase pi/4 and charge -e/2, but, remarkably, can be built by filling a set of single-particle states of essentially noninteracting electrons. The system consists of an artificially structured type-II superconducting film adjacent to a 2D electron gas in the integer quantum Hall regime with unit filling fraction. The proposal rests on the observation that a vacancy in an otherwise periodic vortex lattice in the superconductor creates a bound state in the 2DEG with total charge -e/2. A composite of this fractionally charged hole and the missing flux due to the vacancy behaves as an anyon. The proposed setup allows for manipulation of these anyons and could prove useful in various schemes for fault-tolerant topological quantum computation.Comment: 7 pages with 3 figures. For related work and info visit http://www.physics.ubc.ca/~fran

    A low-voltage activated, transient calcium current is responsible for the time-dependent depolarizing inward rectification of rat neocortical neurons in vitro

    Get PDF
    Intracellular recordings were obtained from rat neocortical neurons in vitro. The current-voltage-relationship of the neuronal membrane was investigated using current- and single-electrode-voltage-clamp techniques. Within the potential range up to 25 mV positive to the resting membrane potential (RMP: –75 to –80 mV) the steady state slope resistance increased with depolarization (i.e. steady state inward rectification in depolarizing direction). Replacement of extracellular NaCl with an equimolar amount of choline chloride resulted in the conversion of the steady state inward rectification to an outward rectification, suggesting the presence of a voltage-dependent, persistent sodium current which generated the steady state inward rectification of these neurons. Intracellularly injected outward current pulses with just subthreshold intensities elicited a transient depolarizing potential which invariably triggered the first action potential upon an increase in current strength. Single-electrode-voltage-clamp measurements reveled that this depolarizing potential was produced by a transient calcium current activated at membrane potentials 15–20 mV positive to the RMP and that this current was responsible for the time-dependent increase in the magnitude of the inward rectification in depolarizing direction in rat neocortical neurons. It may be that, together with the persistent sodium current, this calcium current regulates the excitability of these neurons via the adjustment of the action potential threshold

    Exclusive Leptoproduction of rho^0 Mesons from Hydrogen at Intermediate Virtual Photon Energies

    Full text link
    Measurements of the cross section for exclusive virtual-photoproduction of rho^0 mesons from hydrogen are reported. The data were collected by the HERMES experiment using 27.5 GeV positrons incident on a hydrogen gas target in the HERA storage ring. The invariant mass W of the photon-nucleon system ranges from 4.0 to 6.0 GeV, while the negative squared four-momentum Q^2 of the virtual photon varies from 0.7 to 5.0 GeV^2. The present data together with most of the previous data at W > 4 GeV are well described by a model that infers the W-dependence of the cross section from the dependence on the Bjorken scaling variable x of the unpolarized structure function for deep-inelastic scattering. In addition, a model calculation based on Off-Forward Parton Distributions gives a fairly good account of the longitudinal component of the rho^0 production cross section for Q^2 > 2 GeV^2.Comment: 10 pages, 6 embedded figures, LaTeX for SVJour(epj) document class. Revisions: curves added to Fig. 1, several clarifications added to tex

    Anthrax Lethal Toxin Disrupts Intestinal Barrier Function and Causes Systemic Infections with Enteric Bacteria

    Get PDF
    A variety of intestinal pathogens have virulence factors that target mitogen activated protein kinase (MAPK) signaling pathways, including Bacillus anthracis. Anthrax lethal toxin (LT) has specific proteolytic activity against the upstream regulators of MAPKs, the MAPK kinases (MKKs). Using a murine model of intoxication, we show that LT causes the dose-dependent disruption of intestinal epithelial integrity, characterized by mucosal erosion, ulceration, and bleeding. This pathology correlates with an LT-dependent blockade of intestinal crypt cell proliferation, accompanied by marked apoptosis in the villus tips. C57BL/6J mice treated with intravenous LT nearly uniformly develop systemic infections with commensal enteric organisms within 72 hours of administration. LT-dependent intestinal pathology depends upon its proteolytic activity and is partially attenuated by co-administration of broad spectrum antibiotics, indicating that it is both a cause and an effect of infection. These findings indicate that targeting of MAPK signaling pathways by anthrax LT compromises the structural integrity of the mucosal layer, serving to undermine the effectiveness of the intestinal barrier. Combined with the well-described immunosuppressive effects of LT, this disruption of the intestinal barrier provides a potential mechanism for host invasion via the enteric route, a common portal of entry during the natural infection cycle of Bacillus anthracis

    Cloud Coverage Acts as an Amplifier for Ecological Light Pollution in Urban Ecosystems

    Get PDF
    The diurnal cycle of light and dark is one of the strongest environmental factors for life on Earth. Many species in both terrestrial and aquatic ecosystems use the level of ambient light to regulate their metabolism, growth, and behavior. The sky glow caused by artificial lighting from urban areas disrupts this natural cycle, and has been shown to impact the behavior of organisms, even many kilometers away from the light sources. It could be hypothesized that factors that increase the luminance of the sky amplify the degree of this “ecological light pollution”. We show that cloud coverage dramatically amplifies the sky luminance, by a factor of 10.1 for one location inside of Berlin and by a factor of 2.8 at 32 km from the city center. We also show that inside of the city overcast nights are brighter than clear rural moonlit nights, by a factor of 4.1. These results have important implications for choronobiological and chronoecological studies in urban areas, where this amplification effect has previously not been considered

    Climate change, precipitation and impacts on an estuarine refuge from disease

    Get PDF
    © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 6 (2011): e18849, doi:10.1371/journal.pone.0018849.Oysters play important roles in estuarine ecosystems but have suffered recently due to overfishing, pollution, and habitat loss. A tradeoff between growth rate and disease prevalence as a function of salinity makes the estuarine salinity transition of special concern for oyster survival and restoration. Estuarine salinity varies with discharge, so increases or decreases in precipitation with climate change may shift regions of low salinity and disease refuge away from optimal oyster bottom habitat, negatively impacting reproduction and survival. Temperature is an additional factor for oyster survival, and recent temperature increases have increased vulnerability to disease in higher salinity regions. We examined growth, reproduction, and survival of oysters in the New York Harbor-Hudson River region, focusing on a low-salinity refuge in the estuary. Observations were during two years when rainfall was above average and comparable to projected future increases in precipitation in the region and a past period of about 15 years with high precipitation. We found a clear tradeoff between oyster growth and vulnerability to disease. Oysters survived well when exposed to intermediate salinities during two summers (2008, 2010) with moderate discharge conditions. However, increased precipitation and discharge in 2009 reduced salinities in the region with suitable benthic habitat, greatly increasing oyster mortality. To evaluate the estuarine conditions over longer periods, we applied a numerical model of the Hudson to simulate salinities over the past century. Model results suggest that much of the region with suitable benthic habitat that historically had been a low salinity refuge region may be vulnerable to higher mortality under projected increases in precipitation and discharge. Predicted increases in precipitation in the northeastern United States due to climate change may lower salinities past important thresholds for oyster survival in estuarine regions with appropriate substrate, potentially disrupting metapopulation dynamics and impeding oyster restoration efforts, especially in the Hudson estuary where a large basin constitutes an excellent refuge from disease.Funding was provided by the Hudson River Foundation, grant number 00607A, and the New York State Department of Environmental Conservation (MOU 2008)

    Biokinetics and dosimetry of (111)In-DOTA-NOC-ATE compared with (111)In-DTPA-octreotide.

    Get PDF
    PURPOSE: The biokinetics and dosimetry of (111)In-DOTA-NOC-ATE (NOCATE), a high-affinity ligand of SSTR-2 and SSTR-5, and (111)In-DTPA-octreotide (Octreoscan?, OCTREO) were compared in the same patients. METHODS: Seventeen patients (10 men, 7 women; mean age 60 years), referred for an OCTREO scan for imaging of a neuroendocrine tumour (15), thymoma (1) or medullary thyroid carcinoma (1), agreed to undergo a second study with NOCATE. Whole-body anterior-posterior scans were recorded 0.5 (100 % reference scan), 4, 24 and 48 h (17 patients) and 120 h (5 patients) after injection. In 16 patients the OCTREO scan (178 ± 15 MBq) was performed 16 ± 5 days before the NOCATE scan (108 ± 14 MBq) with identical timing; 1 patient had the NOCATE scan before the OCTREO scan. Blood samples were obtained from 14 patients 5 min to 48 h after injection. Activities expressed as percent of the initial (reference) activity in the whole body, lung, kidney, liver, spleen and blood were fitted to biexponential or single exponential functions. Dosimetry was performed using OLINDA/EXM. RESULTS: Initial whole-body, lung and kidney activities were similar, but retention of NOCATE was higher than that of OCTREO. Liver and spleen uptakes of NOCATE were higher from the start (p < 0.001) and remained so over time. Whole-body activity showed similar α and β half-lives, but the β fraction of NOCATE was double that of OCTREO. Blood T (1/2)β for NOCATE was longer (19 vs. 6 h). As a result, the effective dose of NOCATE (105 μSv/MBq) exceeded that of OCTREO (52 μSv/MBq), and the latter result was similar to the ICRP 106 value of 54 μSv/MBq. Differential activity measurement in blood cells and plasma showed an average of <5 % of NOCATE and OCTREO attached to globular blood components. CONCLUSION: NOCATE showed a slower clearance from normal tissues and its effective dose was roughly double that of OCTREO

    Evaluation of a novel nanocrystalline hydroxyapatite paste Ostim® in comparison to Alpha-BSM® - more bone ingrowth inside the implanted material with Ostim® compared to Alpha BSM®

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to evaluate the performance a newly developed nanocrystalline hydroxyapatite, OSTIM<sup>® </sup>following functional implantation in femoral sites in thirty-eight sheep for 1, 2 or 3 months. Ostim<sup>® </sup>35 was compared to an established calcium phosphate, Alpha BSM<sup>®</sup>.</p> <p>Methods</p> <p>Biomechanical testing, μ-CT analysis, histological and histomorphological analyses were conducted to compare the treatments including evaluation of bone regeneration level, material degradation, implant biomechanical characteristics.</p> <p>Results</p> <p>The micro-computed tomography (μCT) analysis and macroscopic observations showed that Ostim<sup>® </sup>seemed to diffuse easily particularly when the defects were created in a cancellous bone area. Alpha BSM<sup>® </sup>remained in the defect.</p> <p>The performance of Ostim was good in terms of mechanical properties that were similar to Alpha BSM<sup>® </sup>and the histological analysis showed that the bone regeneration was better with Ostim<sup>® </sup>than with Alpha BSM<sup>®</sup>. The histomorphometric analysis confirmed the qualitative analysis and showed more bone ingrowth inside the implanted material with Ostim<sup>® </sup>when compared to Alpha BSM <sup>® </sup>at all time points.</p> <p>Conclusions</p> <p>The successful bone healing with osseous consolidation verifies the importance of the nanocrystalline hydroxyapatite in the treatment of metaphyseal osseous volume defects in the metaphyseal spongiosa.</p
    corecore