47 research outputs found
European bone mineral density loci are also associated with BMD in East-Asian populations
Most genome-wide association (GWA) studies have focused on populations of European ancestry with limited assessment of the influence of the sequence variants on populations of other ethnicities. To determine whether markers that we have recently shown to associate with Bone Mineral Density (BMD) in Europeans also associate with BMD in East-Asians we analysed 50 markers from 23 genomic loci in samples from Korea (n = 1,397) and two Chinese Hong Kong sample sets (n = 3,869 and n = 785). Through this effort we identified fourteen loci that associated with BMD in East-Asian samples using a false discovery rate (FDR) of 0.05; 1p36 (ZBTB40, P = 4.3×10 -9), 1p31 (GPR177, P = 0.00012), 3p22 (CTNNB1, P = 0.00013), 4q22 (MEPE, P = 0.0026), 5q14 (MEF2C, P = 1.3×10 -5), 6q25 (ESR1, P = 0.0011), 7p14 (STARD3NL, P = 0.00025), 7q21 (FLJ42280, P = 0.00017), 8q24 (TNFRSF11B, P = 3.4×10 -5), 11p15 (SOX6, P = 0.00033), 11q13 (LRP5, P = 0.0033), 13q14 (TNFSF11, P = 7.5×10 -5), 16q24 (FOXL1, P = 0.0010) and 17q21 (SOST, P = 0.015). Our study marks an early effort towards the challenge of cataloguing bone density variants shared by many ethnicities by testing BMD variants that have been established in Europeans, in East-Asians. © 2010 Styrkarsdottir et al.published_or_final_versio
Coding variants in RPL3L and MYZAP increase risk of atrial fibrillation
Most sequence variants identified hitherto in genome-wide association studies (GWAS) of atrial fibrillation are common, non-coding variants associated with risk through unknown mechanisms. We performed a meta-analysis of GWAS of atrial fibrillation among 29,502 cases and 767,760 controls from Iceland and the UK Biobank with follow-up in samples from Norway and the US, focusing on low-frequency coding and splice variants aiming to identify causal genes. We observe associations with one missense (OR = 1.20) and one splice-donor variant (OR = 1.50) in RPL3L, the first ribosomal gene implicated in atrial fibrillation to our knowledge. Analysis of 167 RNA samples from the right atrium reveals that the splice-donor variant in RPL3L results in exon skipping. We also observe an association with a missense variant in MYZAP (OR = 1.38), encoding a component of the intercalated discs of cardiomyocytes. Both discoveries emphasize the close relationship between the mechanical and electrical function of the heart
Variants associating with uterine leiomyoma highlight genetic background shared by various cancers and hormone-related traits
Uterine leiomyomas are common benign tumors of the myometrium. We performed a meta-analysis of two genome-wide association studies of leiomyoma in European women (16,595 cases and 523,330 controls), uncovering 21 variants at 16 loci that associate with the disease. Five variants were previously reported to confer risk of various malignant or benign tumors (rs78378222 in TP53, rs10069690 in TERT, rs1800057 and rs1801516 in ATM, and rs7907606 at OBFC1) and four signals are located at established risk loci for hormone-related traits (endometriosis and breast cancer) at 1q36.12 (CDC42/WNT4), 2p25.1 (GREB1), 20p12.3 (MCM8), and 6q26.2 (SYNE1/ESR1). Polygenic score for leiomyoma, computed using UKB data, is significantly correlated with risk of cancer in the Icelandic population. Functional annotation suggests that the non-coding risk variants affect multiple genes, including ESR1. Our results provide insights into the genetic background of leiomyoma that are shared by other benign and malignant tumors and highlight the role of hormones in leiomyoma growth
Polymorphisms in genes of interleukin 12 and its receptors and their association with protection against severe malarial anaemia in children in western Kenya
Abstract
Background: Malarial anaemia is characterized by destruction of malaria infected red blood cells and suppression
of erythropoiesis. Interleukin 12 (IL12) significantly boosts erythropoietic responses in murine models of malarial
anaemia and decreased IL12 levels are associated with severe malarial anaemia (SMA) in children. Based on the
biological relevance of IL12 in malaria anaemia, the relationship between genetic polymorphisms of IL12 and its
receptors and SMA was examined.
Methods: Fifty-five tagging single nucleotide polymorphisms covering genes encoding two IL12 subunits, IL12A
and IL12B, and its receptors, IL12RB1 and IL12RB2, were examined in a cohort of 913 children residing in Asembo
Bay region of western Kenya.
Results: An increasing copy number of minor variant (C) in IL12A (rs2243140) was significantly associated with a
decreased risk of SMA (P = 0.006; risk ratio, 0.52 for carrying one copy of allele C and 0.28 for two copies).
Individuals possessing two copies of a rare variant (C) in IL12RB1 (rs429774) also appeared to be strongly protective
against SMA (P = 0.00005; risk ratio, 0.18). In addition, children homozygous for another rare allele (T) in IL12A
(rs22431348) were associated with reduced risk of severe anaemia (SA) (P = 0.004; risk ratio, 0.69) and of severe
anaemia with any parasitaemia (SAP) (P = 0.004; risk ratio, 0.66). In contrast, AG genotype for another variant in
IL12RB1 (rs383483) was associated with susceptibility to high-density parasitaemia (HDP) (P = 0.003; risk ratio, 1.21).
Conclusions: This study has shown strong associations between polymorphisms in the genes of IL12A and IL12RB1
and protection from SMA in Kenyan children, suggesting that human genetic variants of IL12 related genes may
significantly contribute to the development of anaemia in malaria patients
Unexpected large eruptions from buoyant magma bodies within viscoelastic crust
Large volume effusive eruptions with relatively minor observed precursory signals are at odds with widely used models to interpret volcano deformation. Here we propose a new modelling framework that resolves this discrepancy by accounting for magma buoyancy, viscoelastic crustal properties, and sustained magma channels. At low magma accumulation rates, the stability of deep magma bodies is governed by the magma-host rock density contrast and the magma body thickness. During eruptions, inelastic processes including magma mush erosion and thermal effects, can form a sustained channel that supports magma flow, driven by the pressure difference between the magma body and surface vents. At failure onset, it may be difficult to forecast the final eruption volume; pressure in a magma body may drop well below the lithostatic load, create under-pressure and initiate a caldera collapse, despite only modest precursors
The Oxytocin Receptor (OXTR) Contributes to Prosocial Fund Allocations in the Dictator Game and the Social Value Orientations Task
Background: Economic games observe social decision making in the laboratory that involves real money payoffs. Previously we have shown that allocation of funds in the Dictator Game (DG), a paradigm that illustrates costly altruistic behavior, is partially determined by promoter-region repeat region variants in the arginine vasopressin 1a receptor gene (AVPR1a). In the current investigation, the gene encoding the related oxytocin receptor (OXTR) was tested for association with the DG and a related paradigm, the Social Values Orientation (SVO) task. Methodology/Principal Findings: Association (101 male and 102 female students) using a robust-family based test between 15 single tagging SNPs (htSNPs) across the OXTR was demonstrated with both the DG and SVO. Three htSNPs across the gene region showed significant association with both of the two games. The most significant association was observed with rs1042778 (p = 0.001). Haplotype analysis also showed significant associations for both DG and SVO. Following permutation test adjustment, significance was observed for 2–5 locus haplotypes (p,0.05). A second sample of 98 female subjects was subsequently and independently recruited to play the dictator game and was genotyped for the three significant SNPs found in the first sample. The rs1042778 SNP was shown to be significant for the second sample as well (p = 0.004, Fisher’s exact test). Conclusions: The demonstration that genetic polymorphisms for the OXTR are associated with human prosocial decisio
Sequence variants associating with urinary biomarkers
Urine dipstick tests are widely used in routine medical care to diagnose kidney and urinary tract and metabolic diseases. Several environmental factors are known to affect the test results, whereas the effects of genetic diversity are largely unknown. We tested 32.5 million sequence variants for association with urinary biomarkers in a set of 150 274 Icelanders with urine dipstick measurements. We detected 20 association signals, of which 14 are novel, associating with at least one of five clinical entities defined by the urine dipstick: glucosuria, ketonuria, proteinuria, hematuria and urine pH. These include three independent glucosuria variants at SLC5A2, the gene encoding the sodium-dependent glucose transporter (SGLT2), a protein targeted pharmacologically to increase urinary glucose excretion in the treatment of diabetes. Two variants associating with proteinuria are in LRP2 and CUBN, encoding the co-transporters megalin and cubilin, respectively, that mediate proximal tubule protein uptake. One of the hematuria-associated variants is a rare, previously unreported 2.5 kb exonic deletion in COL4A3. Of the four signals associated with urine pH, we note that the pH-increasing alleles of two variants (POU2AF1, WDR72) associate significantly with increased risk of kidney stones. Our results reveal that genetic factors affect variability in urinary biomarkers, in both a disease dependent and independent context