3,055 research outputs found

    Diffusion and dispersion of passive tracers: Navier-Stokes versus MHD turbulence

    Get PDF
    A comparison of turbulent diffusion and pair-dispersion in homogeneous, macroscopically isotropic Navier-Stokes (NS) and nonhelical magnetohydrodynamic (MHD) turbulence based on high-resolution direct numerical simulations is presented. Significant differences between MHD and NS systems are observed in the pair-dispersion properties, in particular a strong reduction of the separation velocity in MHD turbulence as compared to the NS case. It is shown that in MHD turbulence the average pair-dispersion is slowed down for τd≲t≲10τd\tau_\mathrm{d}\lesssim t\lesssim 10 \tau_\mathrm{d}, τd\tau_\mathrm{d} being the Kolmogorov time, due to the alignment of the relative Lagrangian tracer velocity with the local magnetic field. Significant differences in turbulent single-particle diffusion in NS and MHD turbulence are not detected. The fluid particle trajectories in the vicinity of the smallest dissipative structures are found to be characterisically different although these comparably rare events have a negligible influence on the statistics investigated in this work.Comment: Europhysics Letters, in prin

    Detection of fixed points in spatiotemporal signals by clustering method

    Full text link
    We present a method to determine fixed points in spatiotemporal signals. A 144-dimensioanl simulated signal, similar to a Kueppers-Lortz instability, is analyzed and its fixed points are reconstructed.Comment: 3 pages, 3 figure

    Spiral Defect Chaos in Large Aspect Ratio Rayleigh-Benard Convection

    Full text link
    We report experiments on convection patterns in a cylindrical cell with a large aspect ratio. The fluid had a Prandtl number of approximately 1. We observed a chaotic pattern consisting of many rotating spirals and other defects in the parameter range where theory predicts that steady straight rolls should be stable. The correlation length of the pattern decreased rapidly with increasing control parameter so that the size of a correlated area became much smaller than the area of the cell. This suggests that the chaotic behavior is intrinsic to large aspect ratio geometries.Comment: Preprint of experimental paper submitted to Phys. Rev. Lett. May 12 1993. Text is preceeded by many TeX macros. Figures 1 and 2 are rather lon

    Generation and Structure of Solitary Rossby Vortices in Rotating Fluids

    Full text link
    The formation of zonal flows and vortices in the generalized Charney-Hasegawa-Mima equation is studied. We focus on the regime when the size of structures is comparable to or larger than the deformation (Rossby) radius. Numerical simulations show the formation of anticyclonic vortices in unstable shear flows and ring-like vortices with quiescent cores and vorticity concentrated in a ring. Physical mechanisms that lead to these phenomena and their relevance to turbulence in planetary atmospheres are discussed.Comment: 3 pages in REVTeX, 5 postscript figures separately, submitted to Phys. Rev.

    Effects of non-resonant interaction in ensembles of phase oscillators

    Full text link
    We consider general properties of groups of interacting oscillators, for which the natural frequencies are not in resonance. Such groups interact via non-oscillating collective variables like the amplitudes of the order parameters defined for each group. We treat the phase dynamics of the groups using the Ott-Antonsen ansatz and reduce it to a system of coupled equations for the order parameters. We describe different regimes of co-synchrony in the groups. For a large number of groups, heteroclinic cycles, corresponding to a sequental synchronous activity of groups, and chaotic states, where the order parameters oscillate irregularly, are possible.Comment: 21 pages, 7 fig

    Dependence of magnetic field generation by thermal convection on the rotation rate: a case study

    Full text link
    Dependence of magnetic field generation on the rotation rate is explored by direct numerical simulation of magnetohydrodynamic convective attractors in a plane layer of conducting fluid with square periodicity cells for the Taylor number varied from zero to 2000, for which the convective fluid motion halts (other parameters of the system are fixed). We observe 5 types of hydrodynamic (amagnetic) attractors: two families of two-dimensional (i.e. depending on two spatial variables) rolls parallel to sides of periodicity boxes of different widths and parallel to the diagonal, travelling waves and three-dimensional "wavy" rolls. All types of attractors, except for one family of rolls, are capable of kinematic magnetic field generation. We have found 21 distinct nonlinear convective MHD attractors (13 steady states and 8 periodic regimes) and identified bifurcations in which they emerge. In addition, we have observed a family of periodic, two-frequency quasiperiodic and chaotic regimes, as well as an incomplete Feigenbaum period doubling sequence of bifurcations of a torus followed by a chaotic regime and subsequently by a torus with 1/3 of the cascade frequency. The system is highly symmetric. We have found two novel global bifurcations reminiscent of the SNIC bifurcation, which are only possible in the presence of symmetries. The universally accepted paradigm, whereby an increase of the rotation rate below a certain level is beneficial for magnetic field generation, while a further increase inhibits it (and halts the motion of fluid on continuing the increase) remains unaltered, but we demonstrate that this "large-scale" picture lacks many significant details.Comment: 39 pp., 22 figures (some are low quality), 5 tables. Accepted in Physica

    Scaling properties of granular materials

    Full text link
    Given an assembly of viscoelastic spheres with certain material properties, we raise the question how the macroscopic properties of the assembly will change if all lengths of the system, i.e. radii, container size etc., are scaled by a constant. The result leads to a method to scale down experiments to lab-size.Comment: 4 pages, 2 figure

    Wave function mapping in graphene quantum dots with soft confinement

    Full text link
    Using low-temperature scanning tunneling spectroscopy, we map the local density of states (LDOS) of graphene quantum dots supported on Ir(111). Due to a band gap in the projected Ir band structure around the graphene K point, the electronic properties of the QDs are dominantly graphene-like. Indeed, we compare the results favorably with tight binding calculations on the honeycomb lattice based on parameters derived from density functional theory. We find that the interaction with the substrate near the edge of the island gradually opens a gap in the Dirac cone, which implies soft-wall confinement. Interestingly, this confinement results in highly symmetric wave functions. Further influences of the substrate are given by the known moir{\'e} potential and a 10% penetration of an Ir surface resonanceComment: 7 pages, 11 figures, DFT calculations directly showing the origin of soft confinment, correct identification of the state penetrating from Ir(111) into graphen
    • …
    corecore