3,055 research outputs found
Diffusion and dispersion of passive tracers: Navier-Stokes versus MHD turbulence
A comparison of turbulent diffusion and pair-dispersion in homogeneous,
macroscopically isotropic Navier-Stokes (NS) and nonhelical magnetohydrodynamic
(MHD) turbulence based on high-resolution direct numerical simulations is
presented. Significant differences between MHD and NS systems are observed in
the pair-dispersion properties, in particular a strong reduction of the
separation velocity in MHD turbulence as compared to the NS case. It is shown
that in MHD turbulence the average pair-dispersion is slowed down for
, being
the Kolmogorov time, due to the alignment of the relative Lagrangian tracer
velocity with the local magnetic field. Significant differences in turbulent
single-particle diffusion in NS and MHD turbulence are not detected. The fluid
particle trajectories in the vicinity of the smallest dissipative structures
are found to be characterisically different although these comparably rare
events have a negligible influence on the statistics investigated in this work.Comment: Europhysics Letters, in prin
Detection of fixed points in spatiotemporal signals by clustering method
We present a method to determine fixed points in spatiotemporal signals. A
144-dimensioanl simulated signal, similar to a Kueppers-Lortz instability, is
analyzed and its fixed points are reconstructed.Comment: 3 pages, 3 figure
Spiral Defect Chaos in Large Aspect Ratio Rayleigh-Benard Convection
We report experiments on convection patterns in a cylindrical cell with a
large aspect ratio. The fluid had a Prandtl number of approximately 1. We
observed a chaotic pattern consisting of many rotating spirals and other
defects in the parameter range where theory predicts that steady straight rolls
should be stable. The correlation length of the pattern decreased rapidly with
increasing control parameter so that the size of a correlated area became much
smaller than the area of the cell. This suggests that the chaotic behavior is
intrinsic to large aspect ratio geometries.Comment: Preprint of experimental paper submitted to Phys. Rev. Lett. May 12
1993. Text is preceeded by many TeX macros. Figures 1 and 2 are rather lon
Generation and Structure of Solitary Rossby Vortices in Rotating Fluids
The formation of zonal flows and vortices in the generalized
Charney-Hasegawa-Mima equation is studied. We focus on the regime when the size
of structures is comparable to or larger than the deformation (Rossby) radius.
Numerical simulations show the formation of anticyclonic vortices in unstable
shear flows and ring-like vortices with quiescent cores and vorticity
concentrated in a ring. Physical mechanisms that lead to these phenomena and
their relevance to turbulence in planetary atmospheres are discussed.Comment: 3 pages in REVTeX, 5 postscript figures separately, submitted to
Phys. Rev.
Effects of non-resonant interaction in ensembles of phase oscillators
We consider general properties of groups of interacting oscillators, for
which the natural frequencies are not in resonance. Such groups interact via
non-oscillating collective variables like the amplitudes of the order
parameters defined for each group. We treat the phase dynamics of the groups
using the Ott-Antonsen ansatz and reduce it to a system of coupled equations
for the order parameters. We describe different regimes of co-synchrony in the
groups. For a large number of groups, heteroclinic cycles, corresponding to a
sequental synchronous activity of groups, and chaotic states, where the order
parameters oscillate irregularly, are possible.Comment: 21 pages, 7 fig
Dependence of magnetic field generation by thermal convection on the rotation rate: a case study
Dependence of magnetic field generation on the rotation rate is explored by
direct numerical simulation of magnetohydrodynamic convective attractors in a
plane layer of conducting fluid with square periodicity cells for the Taylor
number varied from zero to 2000, for which the convective fluid motion halts
(other parameters of the system are fixed). We observe 5 types of hydrodynamic
(amagnetic) attractors: two families of two-dimensional (i.e. depending on two
spatial variables) rolls parallel to sides of periodicity boxes of different
widths and parallel to the diagonal, travelling waves and three-dimensional
"wavy" rolls. All types of attractors, except for one family of rolls, are
capable of kinematic magnetic field generation. We have found 21 distinct
nonlinear convective MHD attractors (13 steady states and 8 periodic regimes)
and identified bifurcations in which they emerge. In addition, we have observed
a family of periodic, two-frequency quasiperiodic and chaotic regimes, as well
as an incomplete Feigenbaum period doubling sequence of bifurcations of a torus
followed by a chaotic regime and subsequently by a torus with 1/3 of the
cascade frequency. The system is highly symmetric. We have found two novel
global bifurcations reminiscent of the SNIC bifurcation, which are only
possible in the presence of symmetries. The universally accepted paradigm,
whereby an increase of the rotation rate below a certain level is beneficial
for magnetic field generation, while a further increase inhibits it (and halts
the motion of fluid on continuing the increase) remains unaltered, but we
demonstrate that this "large-scale" picture lacks many significant details.Comment: 39 pp., 22 figures (some are low quality), 5 tables. Accepted in
Physica
Scaling properties of granular materials
Given an assembly of viscoelastic spheres with certain material properties,
we raise the question how the macroscopic properties of the assembly will
change if all lengths of the system, i.e. radii, container size etc., are
scaled by a constant. The result leads to a method to scale down experiments to
lab-size.Comment: 4 pages, 2 figure
Wave function mapping in graphene quantum dots with soft confinement
Using low-temperature scanning tunneling spectroscopy, we map the local
density of states (LDOS) of graphene quantum dots supported on Ir(111). Due to
a band gap in the projected Ir band structure around the graphene K point, the
electronic properties of the QDs are dominantly graphene-like. Indeed, we
compare the results favorably with tight binding calculations on the honeycomb
lattice based on parameters derived from density functional theory. We find
that the interaction with the substrate near the edge of the island gradually
opens a gap in the Dirac cone, which implies soft-wall confinement.
Interestingly, this confinement results in highly symmetric wave functions.
Further influences of the substrate are given by the known moir{\'e} potential
and a 10% penetration of an Ir surface resonanceComment: 7 pages, 11 figures, DFT calculations directly showing the origin of
soft confinment, correct identification of the state penetrating from Ir(111)
into graphen
- …