743 research outputs found

    The Abundance of Kaluza-Klein Dark Matter with Coannihilation

    Full text link
    In Universal Extra Dimension models, the lightest Kaluza-Klein (KK) particle is generically the first KK excitation of the photon and can be stable, serving as particle dark matter. We calculate the thermal relic abundance of the KK photon for a general mass spectrum of KK excitations including full coannihilation effects with all (level one) KK excitations. We find that including coannihilation can significantly change the relic abundance when the coannihilating particles are within about 20% of the mass of the KK photon. Matching the relic abundance with cosmological data, we find the mass range of the KK photon is much wider than previously found, up to about 2 TeV if the masses of the strongly interacting level one KK particles are within five percent of the mass of the KK photon. We also find cases where several coannihilation channels compete (constructively and destructively) with one another. The lower bound on the KK photon mass, about 540 GeV when just right-handed KK leptons coannihilate with the KK photon, relaxes upward by several hundred GeV when coannihilation with electroweak KK gauge bosons of the same mass is included.Comment: 38 pages, 4 figure

    Classical spin liquids in stacked triangular lattice Ising antiferromagnets

    Full text link
    We study Ising antiferromagnets that have nearest-neighbour interactions on multilayer triangular lattices with frustrated (abcabc and abababab) stacking, and make comparisons with the unfrustrated (aaaaaa) stacking. If interlayer couplings are much weaker than in-plane ones, the paramagnetic phase of models with frustrated stackings has a classical spin-liquid regime at low temperature, in which correlations are strong both within and between planes, but there is no long-range order. We investigate this regime using Monte Carlo simulations and by mapping the spin models to coupled height models, which are treated using renormalisation group methods and an analysis of the effects of vortex excitations. The classical spin-liquid regime is parametrically wide at small interlayer coupling in models with frustrated stackings. By contrast, for the unfrustrated stacking there is no extended regime in which interlayer correlations are strong without three-dimensional order.Comment: 25 pages, 21 figures; version to appear in Physical Review B, includes minor correction

    The Place of Widening Participation

    Get PDF
    This chapter reports on a small-scale study to explore the learning careers of mature, non-traditionally qualified students. It reveals how they (re)engage with learning, and their transition from studying on a bespoke access course delivered in a university to study at undergraduate level. The study highlights the barriers and challenges students overcome and identifies their motivations and dispositions to learning. Whilst the majority of access courses are delivered in further education colleges, a small number of universities deliver bespoke access courses. These courses, which are usually designed to facilitate progression within the institution, enable students to experience teaching and learning in a university setting, facilities and support services. The research adopted a qualitative approach, using interviews as the main method of data collection. Emerging findings reveal that (re)engaging with education and the transition from ‘access student’ to undergraduate student is not seamless and without challenges. Such students ‘often undergo a unique and profound experience’ (Burnell, 2015:6) as they enter this new space which provides an opportunity to create new social and class-related identities. The transition to undergraduate study is easier when learners are familiar with the routines and rhythms of higher education in general and the facilities and services of a particular institution

    Scenario for Fractional Quantum Hall Effect in Bulk Isotropic Materials

    Full text link
    We investigate the possibility of a strongly correlated Fractional Quantum Hall (FQH) state in bulk three dimensional isotropic (not layered) materials. We find that a FQH state can exist at low densities only if it is accompanied by a staging transition in which the electrons re-organize themselves in layers, perpendicular to the magnetic field, at distances of order the magnetic length apart. The Hartree energy associated to the staging transition is off-set by the correlation Fock energy of the 3D FQH state. We obtain the phase diagram of bulk electrons in a magnetic field subject to Coulomb interactions as a function of carrier density and lattice constant. At very low densities, the 3D FQH state exhibits a transition to a 3D Wigner crystal state stabilized by phonon correlations

    Spin-transfer switching and low-field precession in exchange-biased spin valve nano-pillars

    Full text link
    Using a three-dimensional focused-ion beam lithography process we have fabricated nanopillar devices which show spin transfer torque switching at zero external magnetic fields. Under a small in-plane external bias field, a field-dependent peak in the differential resistance versus current is observed similar to that reported in asymmetrical nanopillar devices. This is interpreted as evidence for the low-field excitation of spin waves which in our case is attributed to a spin-scattering asymmetry enhanced by the IrMn exchange bias layer coupled to a relatively thin CoFe fixed layer.Comment: 11 pages, 4 figures. To appear in APL, April 200

    Critical Current Oscillations in Strong Ferromagnetic Pi-Junctions

    Full text link
    We report magnetic and electrical measurements of Nb Josephson junctions with strongly ferromagnetic barriers of Co, Ni and Ni80Fe20 (Py). All these materials show multiple oscillations of critical current with barrier thickness implying repeated 0-pi phase-transitions in the superconducting order parameter. We show in particular that the Co barrier devices can be accurately modelled using existing clean limit theories and so that, despite the high exchange energy (309 meV), the large IcRN value in the pi-state means Co barriers are ideally suited to the practical development of superconducting pi-shift devices.Comment: 4 pages 3 figures 1 table. Revised version as accepted for publication. To appear in Physical Review Letter

    Legislative strengthening meets party support in international assistance: a closer relationship?

    Get PDF
    Recent reports recommend that international efforts to help strengthen legislatures in emerging democracies should work more closely with support for building stronger political parties and competitive party systems. This article locates the recommendations within international assistance more generally and reviews the arguments. It explores problems that must be addressed if the recommendations are to be implemented effectively. The article argues that an alternative, issue-based approach to strengthening legislatures and closer links with civil society could gain more traction. However, that is directed more centrally at promoting good governance for the purpose of furthering development than at democratisation goals sought by party aid and legislative strengtheners in the democracy assistance industry

    Cygnus X-3 in outburst : quenched radio emission, radiation losses and variable local opacity

    Full text link
    We present multiwavelength observations of Cygnus X-3 during an extended outburst in 1994 February - March. Intensive radio monitoring at 13.3, 3.6 & 2.0 cm is complemented by observations at (sub)millimetre and infrared wavelengths, which find Cyg X-3 to be unusually bright and variable, and include the first reported detection of the source at 0.45 mm. We report the first confirmation of quenched radio emission prior to radio flaring independent of observations at Green Bank. The observations reveal evidence for wavelength-dependent radiation losses and gradually decreasing opacity in the environment of the radio jet. We find that the radiation losses are likely to be predominantly inverse Compton losses experienced by the radio-emitting electrons in the strong radiation field of a luminous companion to the compact object. We interpret the decreasing opacity during the flare sequence as resulting from a decreasing proportion of thermal electrons entrained in the jet, reflecting a decreasing density in the region of jet formation. We present, drawing in part on the work of other authors, a model based upon mass-transfer rate instability predicting gamma-ray, X-ray, infrared and radio trends during a radio flaring sequence.Comment: LaTeX, 11 pages, 6 figures. Submitted to MNRA
    • …
    corecore