5 research outputs found

    Indoor radon related with the geology in romanian urban agglomerations (cluj-napoca)

    Get PDF
    Radon is a natural radioactive gas that occurs due to the radioactive decay of radium (226Ra) present in rocks which, in turn, cames from the radioactive decay of uranium (238U), a primordial natural element. Along with factors such as porosity, permeability and humidity of the rocks and soils, pressure and temperature, geology setting plays one of the most important roles in the release of radon into the environment. Depending on the mineralogical compositions and characteristics of the bedrock from a certain area, a higher or lower concentration of radioactive minerals can be found in the rocks, which will directly influence the level of radon in the atmosphere, implicitly the concentration of radon measured in houses. In this study, a six months concentration of radon (222Rn) was assessed in 256houses from Cluj-Napoca area using CR-39 nuclear track detectors. Correlations between the indoor radon levels and the geological setting was further analyzed. The aim is to better understand the influence of geology on the concentration of radon levels in homes, in order to further identify other risk areas in terms of exposure to radon. Further investigation is needed on other factors influencing the accumulation of radon in high concentrations indoor, such as ventilation, occupation patterns or constructive and architectural features for typical houses. Therefore, the results of this work are considered to be important for indoor radon management in Romania

    THE QUALITY OF THE NATURAL MINERAL WATERS FROM BUZÄ‚U COUNTY

    No full text
    The main purposes of the present study were: to investigate the physico-chemical parameters of several mineral springs from Buzău County and to classify the investigated waters in mineral water classes, according to national legislation. The analyzed parameters were: pH, temperature, electrical conductivity (EC), total dissolved solids (TDS), salinity, dissolved oxygen (DO) and turbidity. The water samples were collected during October 2014. Generally, the water samples proved to be slightly acidic to neutral, with high levels of TDS (37 7 – 1,271 mg/l). Some of the analyzed dissolved ions (carbonates, bromine and phosphate) were not detected in the analyzed waters. The major dissolved ions distribution is dominated by the presence of sodium (3.8 – 589.2 mg/l), calcium (36.5 – 126.3 mg/l), sulphates (60.3 – 412.2 mg/l) and bicarbonates (213.2 – 915 mg/l). Magnesium ranged between 9.9 – 40.6 mg/l, potassium between 8.7 – 45.2 mg/l, fluoride between 1.0 and 2.9 mg/l., nitrates between 6.4 and 108.9 mg/l and chlorine was between 9.1 and 211.8 mg/l. Some of the investigated water can be commercialized as sodic water, chlorine water, sulphate water and bicarbonate water

    First Steps towards a National Approach for Radon Survey in Romanian Schools

    No full text
    Schools are a category of public buildings with a high radon exposure risk, due to their high occupancy factor. In Romania, the elaboration of a methodology for radon measurements in schools is a necessity imposed both by the European legislation and by the relatively high percentage (about 10%) of the mapped territory with a potential increased risk of exposure to the action of ionizing radiation emitted by radon. In order to optimize the design of a national survey aimed to evaluate radon exposure of children in Romanian schools, we conducted a pilot study in two schools in Cluj-Napoca, following the screening measurements carried out in 109 schools and kindergartens from five counties. The specific steps that must be followed were described, taking into account the international protocols and particularities of Romanian territory. The proposed approach could act as a guide for other large buildings and is implicit for the implementation of National Radon Action Plan, approved by HG no. 526/12 July 2018 in accordance with Council Directive 2013/59/EURATOM. The obtained results indicate that a high probability of annual radon concentration above the national reference level is to be expected in schools

    Radiological Risk Assessment for Karstic Springs Used as Drinking Water in Rural Romania

    No full text
    Seasonal variations of the radon and radium activity concentrations in karstic water sources originating in karstic formations were investigated as part of a premiere systematic survey conducted in Romania. A database including a total of 228 drinking water samples collected from 30 distinct water sources adjacent to rural communities was compiled. The radon and radium activity concentrations for all seasons, assessed based on solid scintillation, ranged from 2.1 to 19.7 Bq/L and from 0.6 to 3.0 Bq/L, respectively. Overall, the detected radon and radium contents did not exceed the radioprotection standards recommended by national and European legislation. However, in at least one season, the measured values for 31% of the samples exceeded the 11.1 Bq/L maximum contaminant level for radon in drinking water recommended by the Environmental Protection Agency of the United States. The associated radiological risk, reported in terms of annual effective dose, was calculated to be between 9.8 × 10−6 and 6.0 × 10−5 mSv/y for radon and between 5.9 × 10−5 and 2.7 × 10−4 mSv/y for radium, which are considerably below the WHO (World Health Organization) guidelines at a value of 0.1 mSv/y
    corecore