104 research outputs found

    Progress toward ultra-stable lasers for use in space

    Get PDF
    This is a summary of a research project that has come to be known as SUNLITE, initially standing for Stanford University - NASA laser in space technology experiment. It involves scientists from the NASA Langley Research Center (LaRC), Stanford University, the National Institute of Standards and Technology (NIST), and the Joint Institute for Laboratory Astrophysics (JILA), and a growing number of other institutions. The long range objective of the SUNLITE effort is to examine the fundamental linewidth and frequency stability limits of an actively stabilized laser oscillator in the microgravity and vibration-free environment of space. The ground-based SUNLITE activities supporting that objective will develop a space-qualified, self-contained and completely automated terahertz oscillator stabilized to a linewidth of less than 3 Hz, along with a measurement system capable of determining laser linewidth to one part in 10(exp 16). The purpose of this paper is to discuss the critical technologies needed to place stabilized lasers in space and to describe the progress made by the SUNLITE project to develop these technologies

    In situ Laser Induced Breakdown Spectroscopy as a tool to discriminate volcanic rocks and magmatic series, Iceland

    Get PDF
    This study evaluates the potentialities of a lab-made pLIBS (portable Laser-Induced Breakdown Spectroscopy) to sort volcanic rocks belonging to various magmatic series. An in-situ chemical analysis of 19 atomic lines, including Al, Ba, Ca, Cr, Cu, Fe, Mg, Mn, Na, Si, Sr and Ti, from 21 sampled rocks was performed during a field exploration in Iceland. Iceland was chosen both for the various typologies of volcanic rocks and the rugged conditions in the field in order to test the sturdiness of the pLIPS. Elemental compositions were also measured using laboratory ICP-AES measurements on the same samples. Based on these latter results, which can be used to identify three different groups of volcanic rocks, a classification model was built in order to sort pLIBS data and to categorize unknown samples. Using a reliable statistical scheme applied to LIBS compositional data, the classification capability of the pLIBS system is clearly demonstrated (90-100% success rate). Although this prototype does not provide quantitative measurements, its use should be of particular interest for future geological field investigations

    Description of the attachment geometry of the anteromedial and posterolateral bundles of the ACL from arthroscopic perspective for anatomical tunnel placement

    Get PDF
    The anterior cruciate ligament (ACL) consists of an anteromedial bundle (AMB) and a posterolateral bundle (PLB). A reconstruction restoring the functional two-bundled nature should be able to approximate normal ACL function better than the most commonly used single-bundle reconstructions. Accurate tunnel positioning is important, but difficult. The purpose of this study was to provide a geometric description of the centre of the attachments relative to arthroscopically visible landmarks. The AMB and PLB attachment sites in 35 dissected cadaver knees were measured with a 3D system, as were anatomical landmarks of femur and tibia. At the femur, the mean ACL centre is positioned 7.9 ± 1.4 mm (mean ± 1 SD) shallow, along the notch roof, from the most lateral over-the-top position at the posterior edge of the intercondylar notch and from that point 4.0 ± 1.3 mm from the notch roof, low on the surface of the lateral condyle wall. The mean AMB centre is at 7.2 ± 1.8 and 1.4 ± 1.7 mm, and the mean PLB centre at 8.8 ± 1.6 and 6.7 ± 2.0 mm. At the tibia, the mean ACL centre is positioned 5.1 ± 1.7 mm lateral of the medial tibial spine and from that point 9.8 ± 2.1 mm anterior. The mean AMB centre is at 3.0 ± 1.6 and 9.4 ± 2.2 mm, and the mean PLB centre at 7.2 ± 1.8 and 10.1 ± 2.1 mm. The ACL attachment geometry is well defined relative to arthroscopically visible landmarks with respect to the AMB and PLB. With simple guidelines for the surgeon, the attachments centres can be found during arthroscopic single-bundle or double-bundle reconstructions
    corecore