276 research outputs found
Superpatterns and Universal Point Sets
An old open problem in graph drawing asks for the size of a universal point
set, a set of points that can be used as vertices for straight-line drawings of
all n-vertex planar graphs. We connect this problem to the theory of
permutation patterns, where another open problem concerns the size of
superpatterns, permutations that contain all patterns of a given size. We
generalize superpatterns to classes of permutations determined by forbidden
patterns, and we construct superpatterns of size n^2/4 + Theta(n) for the
213-avoiding permutations, half the size of known superpatterns for
unconstrained permutations. We use our superpatterns to construct universal
point sets of size n^2/4 - Theta(n), smaller than the previous bound by a 9/16
factor. We prove that every proper subclass of the 213-avoiding permutations
has superpatterns of size O(n log^O(1) n), which we use to prove that the
planar graphs of bounded pathwidth have near-linear universal point sets.Comment: GD 2013 special issue of JGA
Governance tools for board members : adapting strategy maps and balanced scorecards for directorial action
The accountability of members of the board of directors of publicly traded companies has increased over years. Corresponding to these developments, there has been an inadequate advancement of tools and frameworks to help directorial functioning. This paper provides an argument for design of the Balanced Scorecard and Strategy Maps made available to the directors as a means of influencing, monitoring, controlling and assisting managerial action. This paper examines how the Balanced Scorecard and Strategy Maps could be modified and used for this purpose. The paper suggests incorporating Balanced Scorecards in the Internal Process perspective, ‘internal’ implying here not just ‘internal to the firm’, but also ‘internal to the inter-organizational system’. We recommend that other such factors be introduced separately under a new ‘perspective’ depending upon what the board wants to emphasize without creating any unwieldy proliferation of measures. Tracking the Strategy Map over time by the board of directors is a way for the board to take responsibility for the firm’s performance. The paper makes a distinction between action variables and monitoring variables. Monitoring variables are further divided on the basis of two considerations: a) whether results have been met or not and b) whether causative factors have met the expected levels of performance or not. Based on directorial responsibilities and accountability, we take another look at how the variables could be specified more completely and accurately with directorial recommendations for executives
Hepatitis C virus cell-cell transmission and resistance to direct-acting antiviral agents
Hepatitis C virus (HCV) is transmitted between hepatocytes via classical cell entry but also uses direct cell-cell transfer to infect neighboring hepatocytes. Viral cell-cell transmission has been shown to play an important role in viral persistence allowing evasion from neutralizing antibodies. In contrast, the role of HCV cell-cell transmission for antiviral resistance is unknown. Aiming to address this question we investigated the phenotype of HCV strains exhibiting resistance to direct-acting antivirals (DAAs) in state-of-the-art model systems for cell-cell transmission and spread. Using HCV genotype 2 as a model virus, we show that cell-cell transmission is the main route of viral spread of DAA-resistant HCV. Cell-cell transmission of DAA-resistant viruses results in viral persistence and thus hampers viral eradication. We also show that blocking cell-cell transmission using host-targeting entry inhibitors (HTEIs) was highly effective in inhibiting viral dissemination of resistant genotype 2 viruses. Combining HTEIs with DAAs prevented antiviral resistance and led to rapid elimination of the virus in cell culture model. In conclusion, our work provides evidence that cell-cell transmission plays an important role in dissemination and maintenance of resistant variants in cell culture models. Blocking virus cell-cell transmission prevents emergence of drug resistance in persistent viral infection including resistance to HCV DAAs
Nucleotide identity and variability among different Pakistani hepatitis C virus isolates
<p>Abstract</p> <p>Background</p> <p>The variability within the hepatitis C virus (HCV) genome has formed the basis for several genotyping methods and used widely for HCV genotyping worldwide.</p> <p>Aim</p> <p>The aim of the present study was to determine percent nucleotide identity and variability in HCV isolates prevalent in different geographical regions of Pakistan.</p> <p>Methods</p> <p>Sequencing analysis of the 5'noncoding region (5'-NCR) of 100 HCV RNA-positive patients representing all the four provinces of Pakistan were carried out using ABI PRISM 3100 Genetic Analyzer.</p> <p>Results</p> <p>The results showed that type 3 is the predominant genotypes circulating in Pakistan, with an overall prevalence of 50%. Types 1 and 4 viruses were 9% and 6% respectively. The overall nucleotide similarity among different Pakistani isolates was 92.50% ± 0.50%. Pakistani isolates from different areas showed 7.5% ± 0.50% nucleotide variability in 5'NCR region. The percent nucleotide identity (PNI) was 98.11% ± 0.50% within Pakistani type 1 sequences, 98.10% ± 0.60% for type 3 sequences, and 99.80% ± 0.20% for type 4 sequences. The PNI between different genotypes was 93.90% ± 0.20% for type 1 and type 3, 94.80% ± 0.12% for type 1 and type 4, and 94.40% ± 0.22% for type 3 and type 4.</p> <p>Conclusion</p> <p>Genotype 3 is the most prevalent HCV genotype in Pakistan. Minimum and maximum percent nucleotide divergences were noted between genotype 1 and 4 and 1 and 3 respectively.</p
HCV IRES manipulates the ribosome to promote the switch from translation initiation to elongation.
The internal ribosome entry site (IRES) of the hepatitis C virus (HCV) drives noncanonical initiation of protein synthesis necessary for viral replication. Functional studies of the HCV IRES have focused on 80S ribosome formation but have not explored its role after the 80S ribosome is poised at the start codon. Here, we report that mutations of an IRES domain that docks in the 40S subunit's decoding groove cause only a local perturbation in IRES structure and result in conformational changes in the IRES-rabbit 40S subunit complex. Functionally, the mutations decrease IRES activity by inhibiting the first ribosomal translocation event, and modeling results suggest that this effect occurs through an interaction with a single ribosomal protein. The ability of the HCV IRES to manipulate the ribosome provides insight into how the ribosome's structure and function can be altered by bound RNAs, including those derived from cellular invaders
Characterization of antibody-mediated neutralization directed against the hypervariable region 1 of hepatitis C virus E2 glycoprotein
The hypervariable region 1 (HVR1) comprising the first 27 aa of E2 glycoprotein is a target for neutralizing antibodies against hepatitis C virus (HCV), but the mechanisms of this neutralization in the cell-culture-infectious genotype 2a strain JFH1 HCV virus (HCVcc) system are unknown. Two rabbit polyclonal sera, R1020 and R140, recognizing the HVR1 of the genotype 1a isolates H77c and Glasgow (Gla), respectively, and a Gla HVR1-specific mouse mAb AP213 have been described previously. However, attempts to generate of antibodies to the JFH1 HVR1 were unsuccessful. Therefore, this study produced chimeric JFH1 HCVcc viruses harbouring the H77c or Gla HVR1 to assess the reactivity of antibodies to this region and their effects on virus infectivity. The inter-genotypic HVR1 swap did not significantly affect virus infectivity. The genotype 1a HVR1-specific antibodies neutralized chimeric viruses in an isolate-dependent manner, underlining the role of HVR1 in HCV infection. The neutralizing antibodies reacted mainly with the C-terminal portion of HVR1, and detailed mapping identified A17, F20 and Q21 in the Gla HVR1 sequence and T21 (and possibly L20) in the corresponding H77c sequence as key epitope residues for AP213 and R140, and R1020, respectively. Importantly, none of the antibodies inhibited in vitro binding of viral envelope glycoproteins to the best-characterized HCV receptor, CD81, or to the glycosaminoglycan attachment factors. However, the HVR1 antibodies were capable of post-attachment neutralization. Overall, this study emphasizes the role of HVR1 in HCVcc entry and provides new tools to study this region further in the context of complete virions
Hepatitis C virus genotype frequency in Isfahan province of Iran: a descriptive cross-sectional study
<p>Abstract</p> <p>Background</p> <p>Hepatitis C is an infectious disease affecting the liver, caused by the hepatitis C virus (HCV). The hepatitis C virus is a small, enveloped, single-stranded, positive sense RNA virus with a large genetic heterogeneity. Isolates have been classified into at least eleven major genotypes, based on a nucleotide sequence divergence of 30-35%. Genotypes 1, 2 and 3 circulate around the world, while other genotypes are mainly restricted to determined geographical areas. Genotype determination of HCV is clinically valuable as it provides important information which can be used to determine the type and duration of therapy and to predict the outcome of the disease.</p> <p>Results</p> <p>Plasma samples were collected from ninety seven HCV RNA positive patients admitted to two large medical laboratory centers in Isfahan province (Iran) from the years 2007 to 2009. Samples from patients were subjected to HCV genotype determination using a PCR based genotyping kit. The frequency of HCV genotypes was determined as follows: genotype 3a (61.2%), genotype 1a (29.5%), genotype 1b (5.1%), genotype 2 (2%) and mixed genotypes of 1a+3a (2%).</p> <p>Conclusion</p> <p>Genotype 3a is the most frequent followed by the genotype 1a, genotype 1b and genotype 2 in Isfahan province, Iran.</p
Phylogenetic groups, virulence genes and quinolone resistance of integron-bearing Escherichia coli strains isolated from a wastewater treatment plant
We investigated phylogenetic affiliation, occurrence of virulence genes and quinolone resistance in 109 integron-containing strains of Escherichia coli isolated from a wastewater treatment plant. Selection for integron-bearing strains caused a shift toward phylogroup D, which was most numerous, followed by A, B1 and B2. Phylogroups D and B2, both of which are reported to include virulent extraintestinal pathotypes, made up 50.5% of all isolates and were present in every stage of wastewater treatment, including final effluent. Diarrheagenic pathotypes made up 21% of the strains. The average virulence factor genes score was low (1.40) and the range was from 0 to 5. Quinolone and fluoroquinolone resistance was observed in 56.0% and 50.4% of the strains, respectively; however, it was not associated with virulence factor score. Although the average virulence factor score was low, 17.4% of strains had three and more virulence genes. They were isolated mostly from raw sewage, but 30% of them were cultured from final effluent. Release of multiresistant integron-bearing E. coli strains with virulence traits into the environment may create potential threat and be of public health concern
A New Model to Produce Infectious Hepatitis C Virus without the Replication Requirement
Numerous constraints significantly hamper the experimental study of hepatitis C virus (HCV). Robust replication in cell culture occurs with only a few strains, and is invariably accompanied by adaptive mutations that impair in vivo infectivity/replication. This problem complicates the production and study of authentic HCV, including the most prevalent and clinically important genotype 1 (subtypes 1a and 1b). Here we describe a novel cell culture approach to generate infectious HCV virions without the HCV replication requirement and the associated cell-adaptive mutations. The system is based on our finding that the intracellular environment generated by a West-Nile virus (WNV) subgenomic replicon rendered a mammalian cell line permissive for assembly and release of infectious HCV particles, wherein the HCV RNA with correct 5′ and 3′ termini was produced in the cytoplasm by a plasmid-driven dual bacteriophage RNA polymerase-based transcription/amplification system. The released particles preferentially contained the HCV-based RNA compared to the WNV subgenomic RNA. Several variations of this system are described with different HCV-based RNAs: (i) HCV bicistronic particles (HCVbp) containing RNA encoding the HCV structural genes upstream of a cell-adapted subgenomic replicon, (ii) HCV reporter particles (HCVrp) containing RNA encoding the bacteriophage SP6 RNA polymerase in place of HCV nonstructural genes, and (iii) HCV wild-type particles (HCVwt) containing unmodified RNA genomes of diverse genotypes (1a, strain H77; 1b, strain Con1; 2a, strain JFH-1). Infectivity was assessed based on the signals generated by the HCV RNA molecules introduced into the cytoplasm of target cells upon virus entry, i.e. HCV RNA replication and protein production for HCVbp in Huh-7.5 cells as well as for HCVwt in HepG2-CD81 cells and human liver slices, and SP6 RNA polymerase-driven firefly luciferase for HCVrp in target cells displaying candidate HCV surface receptors. HCV infectivity was inhibited by pre-incubation of the particles with anti-HCV antibodies and by a treatment of the target cells with leukocyte interferon plus ribavirin. The production of authentic infectious HCV particles of virtually any genotype without the adaptive mutations associated with in vitro HCV replication represents a new paradigm to decipher the requirements for HCV assembly, release, and entry, amenable to analyses of wild type and genetically modified viruses of the most clinically significant HCV genotypes
Effectiveness of treatment with pegylated interferon and ribavirin in an unselected population of patients with chronic hepatitis C: A Danish nationwide cohort study
<p>Abstract</p> <p>Background</p> <p>The effect of peginterferon and ribavirin treatment on chronic hepatitis C virus (HCV) infection has been established in several controlled clinical studies. However, the effectiveness of treatment and predictors of treatment success in routine clinical practice remains to be established. Our aim was to estimate the effectiveness of peginterferon and ribavirin treatment in unselected HCV patients handled in routine clinical practice. The endpoint was sustained virological response (SVR), determined by the absence of HCV RNA 24 weeks after the end of treatment.</p> <p>Methods</p> <p>We determined the proportion of SVR in a nationwide, population-based cohort of 432 patients with chronic HCV infection who were starting treatment, and analyzed the impact of known covariates on SVR by using a logistic regression analysis.</p> <p>Results</p> <p>The majority of treated patients had genotype 1 (133 patients) and genotype 2/3 (285 patients) infections, with 44% and 72%, respectively, obtaining SVR. Other than genotype, the predictors of SVR were age ≤ 45 years at the start of treatment, completion of unmodified treatment, the absence of cirrhosis and non-European origin.</p> <p>Conclusions</p> <p>The effectiveness of peginterferon and ribavirin treatment for chronic hepatitis C in a routine clinical practice is comparable to that observed in controlled clinical trials, with a higher SVR rate in genotype 2 and 3 patients compared to genotype 1 patients. Our data further indicate that age at start of treatment is a strong predictor of SVR irrespective of HCV genotype, with patients 45 years or younger having a higher SVR rate.</p
- …