1,912 research outputs found

    Constraining the geometry of AGN outflows with reflection spectroscopy

    Get PDF
    We collate active galactic nuclei (AGN) with reported detections of both relativistic reflection and ultra-fast outflows. By comparing the inclination of the inner disc from reflection with the line-of-sight velocity of the outflow, we show that it is possible to meaningfully constrain the geometry of the absorbing material. We find a clear relation between the velocity and inclination, and demonstrate that it can potentially be explained either by simple wind geometries or by absorption from the disc surface. Due to systematic errors and a shortage of high- quality simultaneous measurements our conclusions are tentative, but this study represents a proof-of-concept that has great potential.Comment: 5 pages, 3 figures, accepted to MNRAS letter

    Variable electrostatic transformer: controllable coupling of two charge qubits

    Full text link
    We propose and investigate a novel method for the controlled coupling of two Josephson charge qubits by means of a variable electrostatic transformer. The value of the coupling capacitance is given by the discretized curvature of the lowest energy band of a Josephson junction, which can be positive, negative, or zero. We calculate the charging diagram of the two-qubit system that reflects the transition from positive to negative through vanishing coupling. We also discuss how to construct a phase gate making use of the controllable coupling.Comment: final version, to appear in Phys. Rev. Let

    Superconducting Qubits Coupled to Nanoelectromechanical Resonators: An Architecture for Solid-State Quantum Information Processing

    Full text link
    We describe the design for a scalable, solid-state quantum-information-processing architecture based on the integration of GHz-frequency nanomechanical resonators with Josephson tunnel junctions, which has the potential for demonstrating a variety of single- and multi-qubit operations critical to quantum computation. The computational qubits are eigenstates of large-area, current-biased Josephson junctions, manipulated and measured using strobed external circuitry. Two or more of these phase qubits are capacitively coupled to a high-quality-factor piezoelectric nanoelectromechanical disk resonator, which forms the backbone of our architecture, and which enables coherent coupling of the qubits. The integrated system is analogous to one or more few-level atoms (the Josephson junction qubits) in an electromagnetic cavity (the nanomechanical resonator). However, unlike existing approaches using atoms in electromagnetic cavities, here we can individually tune the level spacing of the ``atoms'' and control their ``electromagnetic'' interaction strength. We show theoretically that quantum states prepared in a Josephson junction can be passed to the nanomechanical resonator and stored there, and then can be passed back to the original junction or transferred to another with high fidelity. The resonator can also be used to produce maximally entangled Bell states between a pair of Josephson junctions. Many such junction-resonator complexes can assembled in a hub-and-spoke layout, resulting in a large-scale quantum circuit. Our proposed architecture combines desirable features of both solid-state and cavity quantum electrodynamics approaches, and could make quantum information processing possible in a scalable, solid-state environment.Comment: 20 pages, 14 separate low-resolution jpeg figure

    Submicrosecond comparisons of time standards via the Navigation Technology Satellites (NTS)

    Get PDF
    An interim demonstration was performed of the time transfer capability of the NAVSTAR GPS system using a single NTS satellite. Measurements of time difference (pseudo-range) are made from the NTS tracking network and at the participating observatories. The NTS network measurements are used to compute the NTS orbit trajectory. The central NTS tracking station has a time link to the Naval Observatory UTC (USNO,MC1) master clock. Measurements are used with the NTS receiver at the remote observatory, the time transfer value UTC (USNO,MC1)-UTC (REMOTE, VIA NTS) is calculated. Intercomparisons were computed using predicted values of satellite clock offset and ephemeus

    In-situ measurement of the permittivity of helium using microwave NbN resonators

    Full text link
    By measuring the electrical transport properties of superconducting NbN quarter-wave resonators in direct contact with a helium bath, we have demonstrated a high-speed and spatially sensitive sensor for the permittivity of helium. In our implementation a 103\sim10^{-3} mm3^3 sensing volume is measured with a bandwidth of 300 kHz in the temperature range 1.8 to 8.8 K. The minimum detectable change of the permittivity of helium is calculated to be 6×\sim6\times101110^{-11} ϵ0\epsilon_0/Hz1/2^{1/2} with a sensitivity of order 101310^{-13} ϵ0\epsilon_0/Hz1/2^{1/2} easily achievable. Potential applications include operation as a fast, localized helium thermometer and as a transducer in superfluid hydrodynamic experiments.Comment: 4 pages, 3 figure

    Low frequency Raman studies of multi-wall carbon nanotubes: experiments and theory

    Full text link
    In this paper, we investigate the low frequency Raman spectra of multi-wall carbon nanotubes (MWNT) prepared by the electric arc method. Low frequency Raman modes are unambiguously identified on purified samples thanks to the small internal diameter of the MWNT. We propose a model to describe these modes. They originate from the radial breathing vibrations of the individual walls coupled through the Van der Waals interaction between adjacent concentric walls. The intensity of the modes is described in the framework of bond polarization theory. Using this model and the structural characteristics of the nanotubes obtained from transmission electron microscopy allows to simulate the experimental low frequency Raman spectra with an excellent agreement. It suggests that Raman spectroscopy can be as useful regarding the characterization of MWNT as it is in the case of single-wall nanotubes.Comment: 4 pages, 2 eps fig., 2 jpeg fig., RevTex, submitted to Phys. Rev.
    corecore