8,484 research outputs found

    Superconformal mechanics, black holes, and non-linear realizations

    Get PDF
    The OSp(2|2)-invariant planar dynamics of a D=4 superparticle near the horizon of a large mass extreme black hole is described by an N=2 superconformal mechanics, with the SO(2) charge being the superparticle's angular momentum. The {\it non-manifest} superconformal invariance of the superpotential term is shown to lead to a shift in the SO(2) charge by the value of its coefficient, which we identify as the orbital angular momentum. The full SU(1,1|2)-invariant dynamics is found from an extension to N=4 superconformal mechanics.Comment: 19 pages, plain latex file. Slightly shortened version, two references adde

    Fluctuations in the electron system of a superconductor exposed to a photon flux

    Full text link
    We report on fluctuations in the electron system, Cooper pairs and quasiparticles, of a superconducting aluminium film. The superconductor is exposed to pair-breaking photons (1.54 THz), which are coupled through an antenna. The change in the complex conductivity of the superconductor upon a change in the quasiparticle number is read out by a microwave resonator. A large range in radiation power can be chosen by carefully filtering the radiation from a blackbody source. We identify two regimes. At high radiation power, fluctuations in the electron system caused by the random arrival rate of the photons are resolved, giving a straightforward measure of the optical efficiency (48%). At low radiation power fluctuations are dominated by excess quasiparticles, the number of which is measured through their recombination lifetime

    Population of human ventricular cell models calibrated with in vivo measurements unravels ionic mechanisms of cardiac alternans

    Get PDF
    Cardiac alternansis an important risk factor in cardiac physiology, and is related to the initiation of many pathophysiological conditions. However, the mechanisms underlying the generation of alternans remain unclear. In this study, we used a population of computational human ventricle models based onthe O’Hara model [1] to explore the effect of 11 key factors experimentally reported to be related to alternans. In vivo experimental datasets coming from patients undergoing cardiac surgery were used in the calibration of our in silico population of models. The calibrated models in the population were divided into two groups (Normal and Alternans) depending on alternans occurrence. Our results showed that there were significant differences in the following 5 ionic currents between the two groups: fast sodium current, sodium calcium exchanger current, sodium potassium pump current, sarcoplasmic reticulum (SR) calcium release flux and SR calcium reuptake flux. Further analysis indicated that fast sodium current and SR calcium uptake were the two most significant currents that contributed to voltage and calcium alternans generation, respectively

    Underground Neutrino Detectors for Particle and Astroparticle Science: the Giant Liquid Argon Charge Imaging ExpeRiment (GLACIER)

    Full text link
    The current focus of the CERN program is the Large Hadron Collider (LHC), however, CERN is engaged in long baseline neutrino physics with the CNGS project and supports T2K as recognized CERN RE13, and for good reasons: a number of observed phenomena in high-energy physics and cosmology lack their resolution within the Standard Model of particle physics; these puzzles include the origin of neutrino masses, CP-violation in the leptonic sector, and baryon asymmetry of the Universe. They will only partially be addressed at LHC. A positive measurement of sin22θ13>0.01\sin^22\theta_{13}>0.01 would certainly give a tremendous boost to neutrino physics by opening the possibility to study CP violation in the lepton sector and the determination of the neutrino mass hierarchy with upgraded conventional super-beams. These experiments (so called ``Phase II'') require, in addition to an upgraded beam power, next generation very massive neutrino detectors with excellent energy resolution and high detection efficiency in a wide neutrino energy range, to cover 1st and 2nd oscillation maxima, and excellent particle identification and π0\pi^0 background suppression. Two generations of large water Cherenkov detectors at Kamioka (Kamiokande and Super-Kamiokande) have been extremely successful. And there are good reasons to consider a third generation water Cherenkov detector with an order of magnitude larger mass than Super-Kamiokande for both non-accelerator (proton decay, supernovae, ...) and accelerator-based physics. On the other hand, a very massive underground liquid Argon detector of about 100 kton could represent a credible alternative for the precision measurements of ``Phase II'' and aim at significantly new results in neutrino astroparticle and non-accelerator-based particle physics (e.g. proton decay).Comment: 31 pages, 14 figure

    Recent Advances in Chromospheric and Coronal Polarization Diagnostics

    Full text link
    I review some recent advances in methods to diagnose polarized radiation with which we may hope to explore the magnetism of the solar chromosphere and corona. These methods are based on the remarkable signatures that the radiatively induced quantum coherences produce in the emergent spectral line polarization and on the joint action of the Hanle and Zeeman effects. Some applications to spicules, prominences, active region filaments, emerging flux regions and the quiet chromosphere are discussed.Comment: Review paper to appear in "Magnetic Coupling between the Interior and the Atmosphere of the Sun", eds. S. S. Hasan and R. J. Rutten, Astrophysics and Space Science Proceedings, Springer-Verlag, 200

    Metallochaperones Are Needed for Mycobacterium tuberculosis and Escherichia coli Nicotinamidase-Pyrazinamidase Activity.

    Get PDF
    Mycobacterium tuberculosis nicotinamidase-pyrazinamidase (PZAse) is a metalloenzyme that catalyzes conversion of nicotinamide-pyrazinamide to nicotinic acid-pyrazinoic acid. This study investigated whether a metallochaperone is required for optimal PZAse activity. M. tuberculosis and Escherichia coli PZAses (PZAse-MT and PZAse-EC, respectively) were inactivated by metal depletion (giving PZAse-MT-Apo and PZAse-EC-Apo). Reactivation with the E. coli metallochaperone ZnuA or Rv2059 (the M. tuberculosis analog) was measured. This was repeated following proteolytic and thermal treatment of ZnuA and Rv2059. The CDC1551 M. tuberculosis reference strain had the Rv2059 coding gene knocked out, and PZA susceptibility and the pyrazinoic acid (POA) efflux rate were measured. ZnuA (200 μM) achieved 65% PZAse-EC-Apo reactivation. Rv2059 (1 μM) and ZnuA (1 μM) achieved 69% and 34.3% PZAse-MT-Apo reactivation, respectively. Proteolytic treatment of ZnuA and Rv2059 and application of three (but not one) thermal shocks to ZnuA significantly reduced the capacity to reactivate PZAse-MT-Apo. An M. tuberculosis Rv2059 knockout strain was Wayne positive and susceptible to PZA and did not have a significantly different POA efflux rate than the reference strain, although a trend toward a lower efflux rate was observed after knockout. The metallochaperone Rv2059 restored the activity of metal-depleted PZAse in vitro Although Rv2059 is important in vitro, it seems to have a smaller effect on PZA susceptibility in vivo. It may be important to mechanisms of action and resistance to pyrazinamide in M. tuberculosis Further studies are needed for confirmation.IMPORTANCE Tuberculosis is an infectious disease caused by the bacterium Mycobacterium tuberculosis and remains one of the major causes of disease and death worldwide. Pyrazinamide is a key drug used in the treatment of tuberculosis, yet its mechanism of action is not fully understood, and testing strains of M. tuberculosis for pyrazinamide resistance is not easy with the tools that are presently available. The significance of the present research is that a metallochaperone-like protein may be crucial to pyrazinamide's mechanisms of action and of resistance. This may support the development of improved tools to detect pyrazinamide resistance, which would have significant implications for the clinical management of patients with tuberculosis: drug regimens that are appropriately tailored to the resistance profile of a patient's individual strain lead to better clinical outcomes, reduced onward transmission of infection, and reduction of the development of resistant strains that are more challenging and expensive to treat

    What do experimental data "say" about growth of hadronic total cross-section?

    Get PDF
    We reanalyse pˉp\bar p p and pppp high energy data of the elastic scattering above s=5\sqrt{s}=5 GeV on the total cross-section σtot\sigma_{tot} and on the forward ρ\rho-ratio for various models of Pomeron, utilizing two methods. The first one is based on analytic amplitudes, the other one relies on assumptions for σtot\sigma_{tot} and on dispersion relation for ρ\rho. We argue that it is not possible, from fitting only existing data for forward scattering, to select a definite asymptotic growth with the energy of σtot\sigma_{tot}. We find equivalent fits to the data together with a logarithmic Pomeron giving a behavior σtotlnγs\sigma_{tot} \propto \ln ^\gamma s, γ[0.5,2.20]\gamma\in [0.5,2.20] and with a supercritical Pomeron giving a behavior σtotsϵ\sigma_{tot} \propto s^\epsilon , ϵ[0.01,0.10]\epsilon\in [0.01,0.10].Comment: LaTeX, 18 pages, 5 eps figures included, to be published in Il Nuovo Ciment

    The under-representation of women in biomechanical sports-related concussion studies

    Get PDF
    corecore