224 research outputs found
Inhibitors of \u3cem\u3eN\u3csup\u3eα\u3c/sup\u3e\u3c/em\u3e-acetyl-l-ornithine Deacetylase: Synthesis, Characterization and Analysis of their Inhibitory Potency
A series of N α-acyl (alkyl)- and N α-alkoxycarbonyl-derivatives of l- and d-ornithine were prepared, characterized, and analyzed for their potency toward the bacterial enzyme N α-acetyl-l-ornithine deacetylase (ArgE). ArgE catalyzes the conversion of N α-acetyl-l-ornithine to l-ornithine in the fifth step of the biosynthetic pathway for arginine, a necessary step for bacterial growth. Most of the compounds tested provided IC50 values in the μM range toward ArgE, indicating that they are moderately strong inhibitors. N α-chloroacetyl-l-ornithine (1g) was the best inhibitor tested toward ArgE providing an IC50 value of 85 μM while N α-trifluoroacetyl-l-ornithine (1f), N α-ethoxycarbonyl-l-ornithine (2b), and N α-acetyl-d-ornithine (1a) weakly inhibited ArgE activity providing IC50 values between 200 and 410 μM. Weak inhibitory potency toward Bacillus subtilis-168 for N α-acetyl-d-ornithine (1a) and N α-fluoro- (1f), N α-chloro- (1g), N α-dichloro- (1h), and N α-trichloroacetyl-ornithine (1i) was also observed. These data correlate well with the IC50 values determined for ArgE, suggesting that these compounds might be capable of getting across the cell membrane and that ArgE is likely the bacterial enzymatic target
The Interplay Between Charge Transfer, Rehybridization, and Atomic Charges in the Internal Geometry of Subunits in Noncovalent Interactions
When a noncovalent bond is formed, there is frequently some charge transfer from one subunit to the other. The interaction also causes changes in the atomic charges and hybridization patterns of bonding orbitals. The manner in which these various effects combine to cause elongations or contractions of bonds within the individual subunits is examined. In both the cases of CH···O H-bonds and P···N pnicogen bonds, the bond length changes are consistent with the guiding principles generally known as Bent’s rules
Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium-Sulfur-Battery Cathode Material with High Capacity and Cycling Stability
We report the synthesis of a graphene-sulfur composite material by wrapping
polyethyleneglycol (PEG) coated submicron sulfur particles with mildly oxidized
graphene oxide sheets decorated by carbon black nanoparticles. The PEG and
graphene coating layers are important to accommodating volume expansion of the
coated sulfur particles during discharge, trapping soluble polysulfide
intermediates and rendering the sulfur particles electrically conducting. The
resulting graphene-sulfur composite showed high and stable specific capacities
up to ~600mAh/g over more than 100 cycles, representing a promising cathode
material for rechargeable lithium batteries with high energy density.Comment: published in Nano Letter
- …