15 research outputs found

    Re-evaluation of blood mercury, lead and cadmium concentrations in the Inuit population of Nunavik (Québec): a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Arctic populations are exposed to mercury, lead and cadmium through their traditional diet. Studies have however shown that cadmium exposure is most often attributable to tobacco smoking. The aim of this study is to examine the trends in mercury, lead and cadmium exposure between 1992 and 2004 in the Inuit population of Nunavik (Northern Québec, Canada) using the data obtained from two broad scale health surveys, and to identify sources of exposure in 2004.</p> <p>Methods</p> <p>In 2004, 917 adults aged between 18 and 74 were recruited in the 14 communities of Nunavik to participate to a broad scale health survey. Blood samples were collected and analysed for metals by inductively coupled plasma mass spectrometry, and dietary and life-style characteristics were documented by questionnaires. Results were compared with data obtained in 1992, where 492 people were recruited for a similar survey in the same population.</p> <p>Results</p> <p>Mean blood concentration of mercury was 51.2 nmol/L, which represent a 32% decrease (p < 0.001) between 1992 and 2004. Mercury blood concentrations were mainly explained by age (partial r<sup>2 </sup>= 0.20; p < 0.0001), and the most important source of exposure to mercury was marine mammal meat consumption (partial r<sup>2 </sup>= 0.04; p < 0.0001). In 2004, mean blood concentration of lead was 0.19 μmol/L and showed a 55% decrease since 1992. No strong associations were observed with any dietary source, and lead concentrations were mainly explained by age (partial r<sup>2 </sup>= 0.20.; p < 0.001). Blood cadmium concentrations showed a 22% decrease (p < 0.001) between 1992 and 2004. Once stratified according to tobacco use, means varied between 5.3 nmol/L in never-smokers and 40.4 nmol/L in smokers. Blood cadmium concentrations were mainly associated with tobacco smoking (partial r<sup>2 </sup>= 0.56; p < 0.0001), while consumption of caribou liver and kidney remain a minor source of cadmium exposure among never-smokers.</p> <p>Conclusion</p> <p>Important decreases in mercury, lead and cadmium exposure were observed. Mercury decrease could be explained by dietary changes and the ban of lead cartridges use likely contributed to the decrease in lead exposure. Blood cadmium concentrations remain high and, underscoring the need for intensive tobacco smoking prevention campaigns in the Nunavik population.</p

    Regional leadership: a systemic view

    Get PDF
    New innovation and industrial policies contribute to the development of an informal economy and have increased collaborative processes across sectors and social spheres within regions. This paper addresses the role of regional leadership in the informal economy. By themselves, network processes increase complexity and create a series of uncertainties that differ from processes that are steered through the hierarchical procedures of public bureaucracy or regulated through the judicial and competitive mechanisms of the market. These collaborative and steering challenges must be addressed by regions that seek to succeed with their development efforts. Empirical findings show us that relatively similar regions do not respond in a uniform fashion to the challenges raised by network based development processes. This paper argues that regional leadership anchored in representative democracy can reduce some of the uncertainties and complexities of network based regional innovation policies, increase sustainability and long term effectiveness, and strengthen local democracy
    corecore