708 research outputs found
Sodium (Na) ultra-short echo time imaging in the human brain using a 3D-Cones trajectory
Object: Sodium magnetic resonance imaging (Na-MRI) of the brain has shown changes in Na signal as a hallmark of various neurological diseases such as stroke, Alzheimer's disease, Multiple Sclerosis and Huntington's disease. To improve scan times and image quality, we have implemented the 3D-Cones (CN) sequence for in vivo Na brain MRI. Materials and methods: Using signal-to-noise (SNR) as a measurement of sequence performance, CN is compared against more established 3D-radial k-space sampling schemes featuring cylindrical stack-of-stars (SOS) and 3D-spokes kooshball (KB) trajectories, on five healthy volunteers in a clinical setting. Resolution was evaluated by simulating the point-spread-functions (PSFs) and experimental measures on a phantom. Results: All sequences were shown to have a similar SNR arbitrary units (AU) of 6-6.5 in brain white matter, 7-9 in gray matter and 17-18 AU in cerebrospinal fluid. SNR between white and gray matter were significantly different for KB and CN (p = 0.046 and <0.001 respectively), but not for SOS (p = 0.1). Group mean standard deviations were significantly smaller for CN (p = 0.016). Theoretical full-width at half-maximum linewidth of the PSF for CN is broadened by only 0.1, compared to 0.3 and 0.8 pixels for SOS and KB respectively. Actual image resolution is estimated as 8, 9 and 6.3 mm for SOS, KB and CN respectively. Conclusion: The CN sequence provides stronger tissue contrast than both SOS and KB, with more reproducible SNR measurements compared to KB. For CN, a higher true resolution in the same amount of time with no significant trade-off in SNR is achieved. CN is therefore more suitable for Na-MRI in the brain. © 2013 The Author(s)
Sodium ((23)Na) ultra-short echo time imaging in the human brain using a 3D-Cones trajectory
Object: Sodium magnetic resonance imaging ((23)Na-MRI) of the brain has shown changes in (23)Na signal as a hallmark of various neurological diseases such as stroke, Alzheimer's disease, Multiple Sclerosis and Huntington's disease. To improve scan times and image quality, we have implemented the 3D-Cones (CN) sequence for in vivo (23)Na brain MRI.
Materials and Methods: Using signal-to-noise (SNR) as a
measurement of sequence performance, CN is compared
against more established 3D-radial k-space sampling
schemes featuring cylindrical stack-of-stars (SOS) and
3D-spokes kooshball (KB) trajectories, on five healthy
volunteers in a clinical setting. Resolution was evaluated by simulating the point-spread-functions (PSFs) and experimental measures on a phantom.
Results: All sequences were shown to have a similar SNR
arbitrary units (AU) of 6–6.5 in brain white matter, 7–9 in
gray matter and 17–18 AU in cerebrospinal fluid. SNR
between white and gray matter were significantly different
for KB and CN (p = 0.046 and\0.001 respectively), but
not for SOS (p = 0.1). Group mean standard deviations
were significantly smaller for CN (p = 0.016). Theoretical
full-width at half-maximum linewidth of the PSF for CN is
broadened by only 0.1, compared to 0.3 and 0.8 pixels for
SOS and KB respectively. Actual image resolution is
estimated as 8, 9 and 6.3 mm for SOS, KB and CN
respectively.
Conclusion: The CN sequence provides stronger tissue
contrast than both SOS and KB, with more reproducible
SNR measurements compared to KB. For CN, a higher true
resolution in the same amount of time with no significant
trade-off in SNR is achieved. CN is therefore more suitable
for 23Na-MRI in the brain
An inhomogeneous toy-model of the quantum gravity with explicitly evolvable observables
An inhomogeneous (1+1)-dimensional model of the quantum gravity is
considered. It is found, that this model corresponds to a string propagating
against some curved background space. The quantization scheme including the
Wheeler-DeWitt equation and the "particle on a sphere" type of the gauge
condition is suggested. In the quantization scheme considered, the "problem of
time" is solved by building of the quasi-Heisenberg operators acting in a space
of solutions of the Wheeler-DeWitt equation and the normalization of the wave
function corresponds to the Klein-Gordon type. To analyze the physical
consequences of the scheme, a (1+1)-dimensional background space is considered
for which a classical solution is found and quantized. The obtained estimations
show the way to solution of the cosmological constant problem, which consists
in compensation of the zero-point oscillations of the matter fields by the
quantum oscillations of the scale factor. Along with such a compensation, a
slow global evolution of a background corresponding to an universe expansion
exists.Comment: 18 page
Bell Correlations and the Common Future
Reichenbach's principle states that in a causal structure, correlations of
classical information can stem from a common cause in the common past or a
direct influence from one of the events in correlation to the other. The
difficulty of explaining Bell correlations through a mechanism in that spirit
can be read as questioning either the principle or even its basis: causality.
In the former case, the principle can be replaced by its quantum version,
accepting as a common cause an entangled state, leaving the phenomenon as
mysterious as ever on the classical level (on which, after all, it occurs). If,
more radically, the causal structure is questioned in principle, closed
space-time curves may become possible that, as is argued in the present note,
can give rise to non-local correlations if to-be-correlated pieces of classical
information meet in the common future --- which they need to if the correlation
is to be detected in the first place. The result is a view resembling Brassard
and Raymond-Robichaud's parallel-lives variant of Hermann's and Everett's
relative-state formalism, avoiding "multiple realities."Comment: 8 pages, 5 figure
Age related changes in metabolite concentrations in the normal spinal cord.
Magnetic resonance spectroscopy (MRS) studies have previously described metabolite changes associated with aging of the healthy brain and provided insights into normal brain aging that can assist us in differentiating age-related changes from those associated with neurological disease. The present study investigates whether age-related changes in metabolite concentrations occur in the healthy cervical spinal cord. 25 healthy volunteers, aged 23-65 years, underwent conventional imaging and single-voxel MRS of the upper cervical cord using an optimised point resolved spectroscopy sequence on a 3T Achieva system. Metabolite concentrations normalised to unsuppressed water were quantified using LCModel and associations between age and spinal cord metabolite concentrations were examined using multiple regressions. A linear decline in total N-Acetyl-aspartate concentration (0.049 mmol/L lower per additional year of age, p = 0.010) and Glutamate-Glutamine concentration (0.054 mmol/L lower per additional year of age, p = 0.002) was seen within our sample age range, starting in the early twenties. The findings suggest that neuroaxonal loss and/or metabolic neuronal dysfunction, and decline in glutamate-glutamine neurotransmitter pool progress with aging
NAA is a Marker of Disability in Secondary-Progressive MS: A Proton MR Spectroscopic Imaging Study
BACKGROUND AND PURPOSE: The secondary progressive phase of multiple sclerosis is characterised by disability progression due to processes that lead to neurodegeneration. Surrogate markers such as those derived from MRI are beneficial in understanding the pathophysiology that drives disease progression and its relationship to clinical disability. We undertook a 1H-MRS imaging study in a large secondary progressive MS (SPMS) cohort, to examine whether metabolic markers of brain injury are associated with measures of disability, both physical and cognitive. MATERIALS AND METHODS: A cross-sectional analysis of individuals with secondary-progressive MS was performed in 119 participants. They underwent 1H-MR spectroscopy to obtain estimated concentrations and ratios to total Cr for total NAA, mIns, Glx, and total Cho in normal-appearing WM and GM. Clinical outcome measures chosen were the following: Paced Auditory Serial Addition Test, Symbol Digit Modalities Test, Nine-Hole Peg Test, Timed 25-foot Walk Test, and the Expanded Disability Status Scale. The relationship between these neurometabolites and clinical disability measures was initially examined using Spearman rank correlations. Significant associations were then further analyzed in multiple regression models adjusting for age, sex, disease duration, T2 lesion load, normalized brain volume, and occurrence of relapses in 2 years preceding study entry. RESULTS: Significant associations, which were then confirmed by multiple linear regression, were found in normal-appearing WM for total NAA (tNAA)/total Cr (tCr) and the Nine-Hole Peg Test (ρ = 0.23; 95% CI, 0.06-0.40); tNAA and tNAA/tCr and the Paced Auditory Serial Addition Test (ρ = 0.21; 95% CI, 0.03-0.38) (ρ = 0.19; 95% CI, 0.01-0.36); mIns/tCr and the Paced Auditory Serial Addition Test, (ρ = -0.23; 95% CI, -0.39 to -0.05); and in GM for tCho and the Paced Auditory Serial Addition Test (ρ = -0.24; 95% CI, -0.40 to -0.06). No other GM or normal-appearing WM relationships were found with any metabolite, with associations found during initial correlation testing losing significance after multiple linear regression analysis. CONCLUSIONS: This study suggests that metabolic markers of neuroaxonal integrity and astrogliosis in normal-appearing WM and membrane turnover in GM may act as markers of disability in secondary-progressive MS
Quantum value indefiniteness
The indeterministic outcome of a measurement of an individual quantum is
certified by the impossibility of the simultaneous, definite, deterministic
pre-existence of all conceivable observables from physical conditions of that
quantum alone. We discuss possible interpretations and consequences for quantum
oracles.Comment: 19 pages, 2 tables, 2 figures; contribution to PC0
Cellular responses of Candida albicans to phagocytosis and the extracellular activities of neutrophils are critical to counteract carbohydrate starvation, oxidative and nitrosative stress
Acknowledgments We thank Alexander Johnson (yhb1D/D), Karl Kuchler (sodD/D mutants), Janet Quinn (hog1D/D, hog1/cap1D/D, trx1D/D) and Peter Staib (ssu1D/D) for providing mutant strains. We acknowledge helpful discussions with our colleagues from the Microbial Pathogenicity Mechanisms Department, Fungal Septomics and the Microbial Biochemistry and Physiology Research Group at the Hans Kno¨ll Institute (HKI), specially Ilse D. Jacobsen, Duncan Wilson, Sascha Brunke, Lydia Kasper, Franziska Gerwien, Sea´na Duggan, Katrin Haupt, Kerstin Hu¨nniger, and Matthias Brock, as well as from our partners in the FINSysB Network. Author Contributions Conceived and designed the experiments: PM HW IMB AJPB OK BH. Performed the experiments: PM CD HW. Analyzed the data: PM HW IMB AJPB OK BH. Wrote the paper: PM HW OK AJPB BH.Peer reviewedPublisher PD
- …