64 research outputs found

    Genetic aspects of dental disorders

    Get PDF
    The document attached has been archived with permission from the Australian Dental Association. An external link to the publisher’s copy is included.This paper reviews past and present applications of quantitative and molecular genetics to dental disorders. Examples are given relating to craniofacial development (including malocclusion), oral supporting tissues (including periodontal diseases) and dental hard tissues (including defects of enamel and dentine as well as dental caries). Future developments and applications to clinical dentistry are discussed. Early investigations confirmed genetic bases to dental caries, periodontal diseases and malocclusion, but research findings have had little impact on clinical practice. The complex multifactorial aetiologies of these conditions, together with methodological problems, have limited progress until recently. Present studies are clarifying previously unrecognized genetic and phenotypic heterogeneities and attempting to unravel the complex interactions between genes and environment by applying new statistical modelling approaches to twin and family data. linkage studies using highly polymorphic DNA markers are providing a means of locating candidate genes, including quantitative trait loci (QTL). In future, as knowledge increases: it should be possible to implement preventive strategies for those genetically-predisposed individuals who are identified-predisposed individuals who are identified to be at risk.Grant C. Townsend, Michael J. Aldred and P. Mark Bartol

    Progressive hemorrhage and myotoxicity induced by echis carinatus venom in murine model: neutralization by inhibitor cocktail of n,n,n `,n `-tetrakis (2-pyridylmethyl) ethane-1,2-diamine and silymarin

    Get PDF
    Viperbite is often associated with severe local toxicity, including progressive hemorrhage and myotoxicity, persistent even after the administration of anti-snake venom (ASV). In the recent past, investigations have revealed the orchestrated actions of Zn2+ metalloproteases (Zn(2+)MPs), phospholipase A(2)s (PLA(2)s) and hyaluronidases (HYs) in the onset and progression of local toxicity from the bitten site. As a consequence, venom researchers and medical practitioners are in deliberate quest of potent molecules alongside ASV to tackle the brutal local manifestations induced by aforesaid venom toxins. Based on these facts, we have demonstrated the protective efficacy of inhibitor cocktail containing equal ratios of N,N,N', N'-tetrakis (2-pyridylmethyl) ethane-1,2-diamine (TPEN) and silymarin (SLN) against progressive local toxicity induced by Echis carinatus venom (ECV). In our previous study we have shown the inhibitory potentials of TPEN towards Zn(2+)MPs of ECV (IC50: 6.7 mu M). In this study we have evaluated in vitro inhibitory potentials of SLN towards PLA(2)s (IC50: 12.5 mu M) and HYs (IC50: 8 mu M) of ECV in addition to docking studies. Further, we have demonstrated the protection of ECV induced local toxicity with 10 mM inhibitor cocktail following 15, 30 min (for hemorrhage and myotoxicity); 60 min (for hemorrhage alone) of ECV injection in murine model. The histological examination of skin and thigh muscle sections taken out from the site of ECV injection substantiated the overall protection offered by inhibitor cocktail. In conclusion, the protective efficacy of inhibitor cocktail is of high interest and can be administered locally alongside ASV to treat severe local toxicity

    Characterization of the macrophage transcriptome in glomerulonephritis-susceptible and -resistant rat strains

    Get PDF
    Crescentic glomerulonephritis (CRGN) is a major cause of rapidly progressive renal failure for which the underlying genetic basis is unknown. WKY rats show marked susceptibility to CRGN, while Lewis rats are resistant. Glomerular injury and crescent formation are macrophage-dependent and mainly explained by seven quantitative trait loci (Crgn1-7). Here, we used microarray analysis in basal and lipopolysaccharide (LPS)-stimulated macrophages to identify genes that reside on pathways predisposing WKY rats to CRGN. We detected 97 novel positional candidates for the uncharacterised Crgn3-7. We identified 10 additional secondary effector genes with profound differences in expression between the two strains (>5-fold change, <1% False Discovery Rate) for basal and LPS-stimulated macrophages. Moreover, we identified 8 genes with differentially expressed alternatively spliced isoforms, by using an in depth analysis at probe-level that allowed us to discard false positives due to polymorphisms between the two rat strains. Pathway analysis identified several common linked pathways, enriched for differentially expressed genes, which affect macrophage activation. In summary, our results identify distinct macrophage transcriptome profiles between two rat strains that differ in susceptibility to glomerulonephritis, provide novel positional candidates for Crgn3-7, and define groups of genes that play a significant role in differential regulation of macrophage activity

    Palladium nanoparticles and nanowires deposited electrochemically: AFM and electrochemical characterization

    Get PDF
    Abstract Palladium nanoparticles and nanowires electrochemically deposited onto a carbon surface were studied using cyclic voltammetry, impedance spectroscopy and atomic force microscopy. The ex situ and in situ atomic force microscopy (AFM) topographic images showed that nanoparticles and nanowires of palladium were preferentially electrodeposited to surface defects on the highly oriented pyrolytic graphite surface and enabled the determination of the Pd nanostructure dimensions on the order of 50–150 nm. The palladium nanoparticles and nanowires electrochemically deposited onto a glassy carbon surface behave differently with respect to the pH of the electrolyte buffer solution. In acid or mild acid solutions under applied negative potential, hydrogen can be adsorbed/absorbed onto/into the palladium lattice. By controlling the applied negative potential, different quantities of hydrogen can be incorporated, and this process was followed, analysing the oxidation peak of hydrogen. It is also shown that the growth of the Pd oxide layer begins at negative potentials with the formation of a pre-monolayer oxide film, at a potential well before the hydrogen evolution region. At positive potentials, Pd(0) nanoparticles undergo oxidation, and the formation of a mixed oxide layer was observed, which can act as nucleation points for Pd metal growth, increasing the metal electrode surface coverage. Depending on thickness and composition, this oxide layer can be reversibly reduced. AFM images confirmed that the PdO and PdO2 oxides formed on the surface may act as nucleation points for Pd metal growth, increasing the metal electrode surface coverage
    • 

    corecore