17,145 research outputs found
Human settlement of the last glaciation on the Tibetan plateau
An archaeological site with 19 handprints and footprints of Homo sapiens and the remnant of a fireplace have been found on hot spring travertine at an elevation of 4200 m on the Tibetan plateau. The prints were pressed on soft travertine by humans. The age of the prints and fireplace is estimated to be around 20,000 years using the optically stimulated luminescence method. The result suggests that humans came to the plateau much earlier than was previously thought. This evidence of human settlement implies that the Tibetans occupy high plateau much earlier than the Andeans and the ice sheet did not cover the entire Tibetan plateau during the Last Glacial Maximum.published_or_final_versio
Research on multi-resolution texture model in three-dimensional GIS
2002-2003 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Adaptive Measurement Network for CS Image Reconstruction
Conventional compressive sensing (CS) reconstruction is very slow for its
characteristic of solving an optimization problem. Convolu- tional neural
network can realize fast processing while achieving compa- rable results. While
CS image recovery with high quality not only de- pends on good reconstruction
algorithms, but also good measurements. In this paper, we propose an adaptive
measurement network in which measurement is obtained by learning. The new
network consists of a fully-connected layer and ReconNet. The fully-connected
layer which has low-dimension output acts as measurement. We train the
fully-connected layer and ReconNet simultaneously and obtain adaptive
measurement. Because the adaptive measurement fits dataset better, in contrast
with random Gaussian measurement matrix, under the same measuremen- t rate, it
can extract the information of scene more efficiently and get better
reconstruction results. Experiments show that the new network outperforms the
original one.Comment: 11pages,8figure
Changes in the adsorption of bisphenol A, 17ɑ-ethinyl estradiol, and phenanthrene on marine sediment in Hong Kong in relation to the simulated sediment organic matter decomposition
postprin
Knowledge-bases, places, spatial configurations and the performance of knowledge-intensive professional service firms
Working Pape
A numerical investigation on the damage identification of timber utility poles based on wavelet packet energy
Timber utility poles are traditionally used for electricity and telecommunication distribution. Due to the old age of many distribution networks, the health condition of these timber poles needs to be assessed. Non-destructive testing (NDT) methods based on stress wave propagation have successfully been used in practice for the condition assessment of timber poles. However, for the successful application of these methods for damage identification, some limitations exist. To overcome these limitations, this paper proposes the use of wavelet packet energy (WPE) for the stress wave data analysis and damage identification. WPE is a sensitive indicator for structural damage and has been used for damage detection in various types of structures. This paper presents a comprehensive investigation on the novel use of WPE for the damage identification in timber utility poles using finite element (FE) models. The research study comprises of the following investigations: i) a comparative study between 2D and 3D models, ii) a sensitivity study of mesh density for 2D models, and iii) a study of the novel WPE-based technique for damage detection in timber poles. The results of the new method clearly show the effectiveness of the proposed damage identification technique based on WPE
Application and improvement of conventional stress-wave-based non-destructive testing methods for the condition assessment of in-service timber utility poles
Timber utility poles represent a significant part of Australia’s infrastructure for power distribution and communication networks. Due to their advanced age, significant efforts are undertaken to prevent utility lines from failure. However, the lack of reliable tools for assessing the condition of in-service poles seriously jeopardizes the maintenance and asset management. Non-destructive testing (NDT) methods based on stress wave propagation can potentially offer simple and cost-effective tools for the condition assessment of in-service timber poles. Based on the impact direction and location, mainly two wave types can be excited in a pole, i.e. longitudinal and bending waves. A conventional stresswave- based method that analyses longitudinal waves is the Sonic Echo (SE) method; and a typical signal processing method for the analysis of bending waves (BW) is the Short Kernel Method (SKM). In this paper, firstly, the application of the conventional SE method and the BW method with SKM data analysis is investigated for the condition assessment of timber poles from a signal processing perspective. Secondly, to improve limitations of the current methods, the application of a multisensors array is proposed for more reliable and accurate results. The new method is validated on numerical data of a timber pole modelled with both isotropic and orthotropic material properties
Precipitation chemistry of Lhasa and other remote towns, Tibet
Precipitation event samples during 1987-1988 field expedition periods and 1997, 1998, 1999 and 2000 have been collected at Lhasa, Dingri, Dangxiong and Amdo, Tibet. The sampling and analysis were based on WMO recommendations for a background network with some modifications according to local conditions and environmental characteristics. The following precipitation constituents and related parameters were measured: pH, conductivity, CO2 partial pressure, total suspended particles, and the content of K+, Na+, Ca2+, Mg2+, Fe, Mn, NH4 +, Cl-, NO2 -, NO3 -, SO4 2-Br-, HCO3 - and HPO4 2-. Some atmospheric dust samples have also been collected. Over 300 precipitation events have been measured for pH and conductivity. Among these, 60 have been analysed for their chemical components. The results show that Lhasa's precipitation events were constantly alkaline with weighted averages of pH 8.36 in the 1987-1988 period, and 7.5 for 1997 to 1999. Only one event was weakly acidic during 1997-1999. Although CO2 partial pressure, a major producer of acidity in natural water on the Plateau, falls with increasing elevation, the lowest measured CO2 partial pressure can only raise pH value by 0.1 units in the sampling areas. Chemical analysis indicates that the major contributor to alkaline precipitation is the continental dust, which is rich in calcium. The analysis also shows that Tibet is still one of the cleanest areas in the world with little air pollution. However, the decline of pH from the 1980s to 1990s, which was reflected by an increase of NO3 - and SO4 2- in precipitation, alerts us to the urgency of environmental protection in this fragile paradise. © 2002 Elsevier Science Ltd. All rights reserved.postprin
Temperature and pressure behavior of the emission bands from Mn-, Cu-, and Eu-doped ZnS nanocrystals
The Mn-, Cu- and Eu-doped ZnS nanocrystals (NC) were analyzed for temeperature and pressure dependence of photoluminescence. The thermal quenching behavior of characteristic emission bands reflected nature of different transition mechanisms. The energies of Mn-orange and Eu-green emissions were observed to be weakly dependent on temperature. The results show strong interaction between excited state of Eu2+ ions and conduction band of ZnS which was responsible for positive pressure coefficient.published_or_final_versio
- …
