564 research outputs found

    Electroweak Baryogenesis and Dark Matter with an approximate R-symmetry

    Full text link
    It is well known that R-symmetric models dramatically alleviate the SUSY flavor and CP problems. We study particular modifications of existing R-symmetric models which share the solution to the above problems, and have interesting consequences for electroweak baryogenesis and the Dark Matter (DM) content of the universe. In particular, we find that it is naturally possible to have a strongly first-order electroweak phase transition while simultaneously relaxing the tension with EDM experiments. The R-symmetry (and its small breaking) implies that the gauginos (and the neutralino LSP) are pseudo-Dirac fermions, which is relevant for both baryogenesis and DM. The singlet superpartner of the U(1)_Y pseudo-Dirac gaugino plays a prominent role in making the electroweak phase transition strongly first-order. The pseudo-Dirac nature of the LSP allows it to behave similarly to a Dirac particle during freeze-out, but like a Majorana particle for annihilation today and in scattering against nuclei, thus being consistent with current constraints. Assuming a standard cosmology, it is possible to simultaneously have a strongly first-order phase transition conducive to baryogenesis and have the LSP provide the full DM relic abundance, in part of the allowed parameter space. However, other possibilities for DM also exist, which are discussed. It is expected that upcoming direct DM searches as well as neutrino signals from DM annihilation in the Sun will be sensitive to this class of models. Interesting collider and Gravity-wave signals are also briefly discussed.Comment: 50 pages, 10 figure

    Weak up-regulation of serum response factor in gastric ulcers in patients with co-morbidities is associated with increased risk of recurrent bleeding

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Serum response factor (SRF) is crucial for gastric ulcer healing process. The study determined if gastric ulcer tissues up-regulate SRF and if such up-regulation correlated with co-morbidities and the risk of recurrent bleeding.</p> <p>Methods</p> <p>Ulcer and non-ulcer tissues were obtained from 142 patients with active gastric ulcers for SRF expression assessed by immunohistochemistry. Based on the degree of SRF expression between these two tissue types, SRF up-regulation was classified as strong, intermediate, and weak patterns. The patients were followed-up to determine if SRF up-regulation correlated to recurrent bleeding.</p> <p>Results</p> <p>Gastric ulcer tissues had higher SRF expression than non-ulcer tissues (<it>p </it>< 0.05). Patients with strong SRF up-regulation had lower rates of stigmata of recent hemorrhage (SRH) on the ulcer base than the others (<it>p </it>< 0.05). Multivariate logistic regression confirmed that co-morbidities and weak SRF up-regulation were two independent factors of recurrent gastric ulcer bleeding (<it>p </it>< 0.05). Combining both factors, there was an 8.29-fold (95% CI, 1.31~52.62; <it>p </it>= 0.03) higher risk of recurrent gastric ulcer bleeding.</p> <p>Conclusions</p> <p>SRF expression is higher in gastric ulcer tissues than in non-ulcer tissues. Weak SRF up-regulation, combined with the presence of co-morbidities, increase the risk of the recurrent gastric ulcer bleeding.</p

    Biomonitoring of bisphenol A concentrations in maternal and umbilical cord blood in regard to birth outcomes and adipokine expression: a birth cohort study in Taiwan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bisphenol A (BPA) is a sealant and flux of plastic materials and has been determined to be an endocrine-disrupting chemical. Prenatal exposure to BPA can lead to substantial adverse effects on fetal growth and development. This study was conducted to assess BPA concentration in pregnant women and umbilical cord blood, and to investigate whether maternal BPA exposure affected fetal outcomes including lower birth weight (LBW), smaller size for gestational age (SGA), and high leptin (HLP) and low adiponectin (LAD) secretion.</p> <p>Methods</p> <p>We measured the BPA levels of maternal blood (n = 97) and umbilical cord blood (n = 97) with a high-performance liquid chromatography/UV detector. The protein secretion of leptin and adiponectin were separately determined using enzyme-linked immunosorbent assay. A logistic regression was performed to estimate the effects of maternal exposure to BPA on LBW, SGA, and adverse action of adipokines in newborns.</p> <p>Results</p> <p>The geometric means of BPA concentration in maternal blood and fetal cord blood were 2.5 ng/ml and 0.5 ng/ml, respectively. Elevated risks of LBW (OR 2.42, 95% confidence interval (CI) 1.72-3.36), SGA (OR 2.01, 95% CI 1.39-3.01), and adverse action of leptin (OR 1.67, 95% CI 1.12-2.25) and adiponectin (OR 1.25, 95% CI 1.52-3.97) were observed in male neonates in the highest quartile of maternal BPA exposure.</p> <p>Conclusions</p> <p>Elevated prenatal BPA exposure increased the risk of LBW, SGA, and adverse actions of adipokines in neonates, especially in male infants. These results provide further evidence that maternal exposure is correlated with adverse birth outcomes.</p

    Influence of Exposure to Imidacloprid on Survivorship, Reproduction and Vitellin Content of the Carmine Spider Mite, Tetranychus cinnabarinus

    Get PDF
    Occasional reports linking neonicotinoid insecticide applications to field population outbreaks of the spider mite have been a topic of concern for integrated pest management programs. To elucidate the impacts of a neonicotinoid insecticide on the carmine spider mite, Tetranychus cinnabarinus Boisduval (Acari: Tetranychidae), the survivorship, reproduction, and vitellin contents of the mite were investigated after exposure to various concentrations of imidacloprid on the V. unguiculata leaf discs at 25°C, 80% RH and a photoperiod of 14:10 (L:D) in the laboratory. The results showed that the field-relevant dose of imidacloprid did not significantly affect the hatch rate of eggs or pre-imaginal survivorship of the mite, while sublethal doses of imidacloprid, previously determined for Myzus persicae, led to a significant increase in the hatch rate of eggs and pre-imaginal survivorship of the mite compared to the untreated control. Adult longevity and fecundity of T. cinnabarinus for imidacloprid-treated populations were slightly prolonged and increased, respectively, but the difference from the untreated control was not significant. The vitellin content in eggs increased significantly after exposure to imidacloprid. Imidacloprid may be one of the major reasons for the outbreak of T. cinnabarinus in the field

    Successful Targeting and Disruption of an Integrated Reporter Lentivirus Using the Engineered Homing Endonuclease Y2 I-AniI

    Get PDF
    Current antiviral therapy does not cure HIV-infected individuals because the virus establishes lifelong latent infection within long-lived memory T cells as integrated HIV proviral DNA. Here, we report a new therapeutic approach that aims to cure cells of latent HIV infection by rendering latent virus incapable of replication and pathogenesis via targeted cellular mutagenesis of essential viral genes. This is achieved by using a homing endonuclease to introduce DNA double-stranded breaks (dsb) within the integrated proviral DNA, which is followed by triggering of the cellular DNA damage response and error-prone repair. To evaluate this concept, we developed an in vitro culture model of viral latency, consisting of an integrated lentiviral vector with an easily evaluated reporter system to detect targeted mutagenesis events. Using this system, we demonstrate that homing endonucleases can efficiently and selectively target an integrated reporter lentivirus within the cellular genome, leading to mutation in the proviral DNA and loss of reporter gene expression. This new technology offers the possibility of selectively disabling integrated HIV provirus within latently infected cells

    Lovastatin Modulates Glycogen Synthase Kinase-3β Pathway and Inhibits Mossy Fiber Sprouting after Pilocarpine-Induced Status Epilepticus

    Get PDF
    This study was undertaken to assay the effect of lovastatin on the glycogen synthase kinase-3 beta (GSK-3β) and collapsin responsive mediator protein-2 (CRMP-2) signaling pathway and mossy fiber sprouting (MFS) in epileptic rats. MFS in the dentate gyrus (DG) is an important feature of temporal lobe epilepsy (TLE) and is highly related to the severity and the frequency of spontaneous recurrent seizures. However, the molecular mechanism of MFS is mostly unknown. GSK-3β and CRMP-2 are the genes responsible for axonal growth and neuronal polarity in the hippocampus, therefore this pathway is a potential target to investigate MFS. Pilocarpine-induced status epilepticus animal model was taken as our researching material. Western blot, histological and electrophysiological techniques were used as the studying tools. The results showed that the expression level of GSK-3β and CRMP-2 were elevated after seizure induction, and the administration of lovastatin reversed this effect and significantly reduced the extent of MFS in both DG and CA3 region in the hippocampus. The alteration of expression level of GSK-3β and CRMP-2 after seizure induction proposes that GSK-3β and CRMP-2 are crucial for MFS and epiletogenesis. The fact that lovastatin reversed the expression level of GSK-3β and CRMP-2 indicated that GSK-3β and CRMP-2 are possible to be a novel mechanism of lovatstain to suppress MFS and revealed a new therapeutic target and researching direction for studying the mechanism of MFS and epileptogenesis

    Strain induced exciton fine-structure splitting and shift in bent ZnO microwires

    Get PDF
    Lattice strain is a useful and economic way to tune the device performance and is commonly present in nanostructures. Here, we investigated for the first time the exciton spectra evolution in bent ZnO microwires along the radial direction via high spatial/energy resolution cathodeluminescence spectroscopy at 5.5 K. Our experiments show that the exciton peak splits into multi fine peaks towards the compressive part while retains one peak in the tensile part and the emission peak displays a continuous blue-shift from tensile to compressive edges. In combination with first-principles calculations, we show that the observed NBE emission splitting is due to the valence band splitting and the absence of peak splitting in the tensile part maybe due to the highly localized holes in the A band and the carrier density distribution across the microwire. Our studies may pave the way to design nanophotonic and electronic devices using bent ZnO nanowires

    Detection, Mapping, and Quantification of Single Walled Carbon Nanotubes in Histological Specimens with Photoacoustic Microscopy

    Get PDF
    Contains fulltext : 110845.pdf (publisher's version ) (Open Access)AIMS: In the present study, the efficacy of multi-scale photoacoustic microscopy (PAM) was investigated to detect, map, and quantify trace amounts [nanograms (ng) to micrograms (microg)] of SWCNTs in a variety of histological tissue specimens consisting of cancer and benign tissue biopsies (histological specimens from implanted tissue engineering scaffolds). MATERIALS AND METHODS: Optical-resolution (OR) and acoustic-resolution (AR)--Photoacoustic microscopy (PAM) was employed to detect, map and quantify the SWCNTs in a variety of tissue histological specimens and compared with other optical techniques (bright-field optical microscopy, Raman microscopy, near infrared (NIR) fluorescence microscopy). RESULTS: Both optical-resolution and acoustic-resolution PAM, allow the detection and quantification of SWCNTs in histological specimens with scalable spatial resolution and depth penetration. The noise-equivalent detection sensitivity to SWCNTs in the specimens was calculated to be as low as approximately 7 pg. Image processing analysis further allowed the mapping, distribution, and quantification of the SWCNTs in the histological sections. CONCLUSIONS: The results demonstrate the potential of PAM as a promising imaging technique to detect, map, and quantify SWCNTs in histological specimens, and could complement the capabilities of current optical and electron microscopy techniques in the analysis of histological specimens containing SWCNTs

    Bryostatin Modulates Latent HIV-1 Infection via PKC and AMPK Signaling but Inhibits Acute Infection in a Receptor Independent Manner

    Get PDF
    HIV's ability to establish long-lived latent infection is mainly due to transcriptional silencing in resting memory T lymphocytes and other non dividing cells including monocytes. Despite an undetectable viral load in patients treated with potent antiretrovirals, current therapy is unable to purge the virus from these latent reservoirs. In order to broaden the inhibitory range and effectiveness of current antiretrovirals, the potential of bryostatin was investigated as an HIV inhibitor and latent activator. Bryostatin revealed antiviral activity against R5- and X4-tropic viruses in receptor independent and partly via transient decrease in CD4/CXCR4 expression. Further, bryostatin at low nanomolar concentrations robustly reactivated latent viral infection in monocytic and lymphocytic cells via activation of Protein Kinase C (PKC) -α and -δ, because PKC inhibitors rottlerin and GF109203X abrogated the bryostatin effect. Bryostatin specifically modulated novel PKC (nPKC) involving stress induced AMP Kinase (AMPK) inasmuch as an inhibitor of AMPK, compound C partially ablated the viral reactivation effect. Above all, bryostatin was non-toxic in vitro and was unable to provoke T-cell activation. The dual role of bryostatin on HIV life cycle may be a beneficial adjunct to the treatment of HIV especially by purging latent virus from different cellular reservoirs such as brain and lymphoid organs
    corecore