4,666 research outputs found
A Comparison of Supersymmetry Breaking and Mediation Mechanisms
We give a unified treatment of different models of supersymmetry breaking and
mediation from a four dimensional effective field theory standpoint. In
particular a comparison between GMSB and various gravity mediated versions of
SUSY breaking shows that, once the former is embedded within a SUGRA framework,
there is no particular advantage to that mechanism from the point of view of
FCNC suppression. We point out the difficulties of all these scenarios - in
particular the cosmological modulus problem. We end with a discussion of
possible string theory realizations.Comment: Added clarifications and references, 20 page
Larval and Post-Larval Stages of Pacific Oyster (Crassostrea gigas) Are Resistant to Elevated CO2
published_or_final_versio
Stabilizing All Kahler Moduli in Type IIB Orientifolds
We describe a simple and robust mechanism that stabilizes all Kahler moduli
in Type IIB orientifold compactifications. This is shown to be possible with
just one non-perturbative contribution to the superpotential coming from either
a D3-instanton or D7-branes wrapped on an ample divisor. This
moduli-stabilization mechanism is similar to and motivated by the one used in
the fluxless G_2 compactifications of M-theory. After explaining the general
idea, explicit examples of Calabi-Yau orientifolds with one and three Kahler
moduli are worked out. We find that the stabilized volumes of all two- and
four-cycles as well as the volume of the Calabi-Yau manifold are controlled by
a single parameter, namely, the volume of the ample divisor. This feature would
dramatically constrain any realistic models of particle physics embedded into
such compactifications. Broad consequences for phenomenology are discussed, in
particular the dynamical solution to the strong CP-problem within the
framework.Comment: RevTeX, 24 pages, 2 tables, 1 figure
Bi-objective optimization of pylon-engine-nacelle assembly: weight vs. tip clearance criterion
Light hadron, Charmonium(-like) and Bottomonium(-like) states
Hadron physics represents the study of strongly interacting matter in all its
manifestations and the understanding of its properties and interactions. The
interest on this field has been revitalized by the discovery of new light
hadrons, charmonium- and bottomonium-like states. I review the most recent
experimental results from different experiments.Comment: Presented at Lepton-Photon 2011, Mumbai, India; 21 pages, 18 figures;
  add more references; some correctio
Dark Radiation and Dark Matter in Large Volume Compactifications
We argue that dark radiation is naturally generated from the decay of the
overall volume modulus in the LARGE volume scenario. We consider both
sequestered and non-sequestered cases, and find that the axionic superpartner
of the modulus is produced by the modulus decay and it can account for the dark
radiation suggested by observations, while the modulus decay through the
Giudice-Masiero term gives the dominant contribution to the total decay rate.
In the sequestered case, the lightest supersymmetric particles produced by the
modulus decay can naturally account for the observed dark matter density. In
the non-sequestered case, on the other hand, the supersymmetric particles are
not produced by the modulus decay, since the soft masses are of order the heavy
gravitino mass. The QCD axion will then be a plausible dark matter candidate.Comment: 27 pages, 4 figures; version 3: version published in JHE
Leukocyte-specific protein 1 regulates T-cell migration in rheumatoid arthritis
Copy number variations (CNVs) have been implicated in human diseases. However, it remains unclear how they affect immune dysfunction and autoimmune diseases, including rheumatoid arthritis (RA). Here, we identified a novel leukocyte-specific protein 1 (LSP1) deletion variant for RA susceptibility located in 11p15.5. We replicated that the copy number of LSP1 gene is significantly lower in patients with RA, which correlates positively with LSP1 protein expression levels. Differentially expressed genes in Lsp1-deficient primary T cells represent cell motility and immune and cytokine responses. Functional assays demonstrated that LSP1, induced by T-cell receptor activation, negatively regulates T-cell migration by reducing ERK activation in vitro. In mice with T-cell-dependent chronic inflammation, loss of Lsp1 promotes migration of T cells into the target tissues as well as draining lymph nodes, exacerbating disease severity. Moreover, patients with RA show diminished expression of LSP1 in peripheral T cells with increased migratory capacity, suggesting that the defect in LSP1 signaling lowers the threshold for T-cell activation. To our knowledge, our work is the first to demonstrate how CNVs result in immune dysfunction and a disease phenotype. Particularly, our data highlight the importance of LSP1 CNVs and LSP1 insufficiency in the pathogenesis of RA and provide previously unidentified insights into the mechanisms underlying T-cell migration toward the inflamed synovium in RA.1187Ysciescopu
Sparticle mass spectra from SU(5) SUSY GUT models with Yukawa coupling unification
Supersymmetric grand unified models based on the gauge group SU(5) often
require in addition to gauge coupling unification, the unification of b-quark
and -lepton Yukawa couplings. We examine SU(5) SUSY GUT parameter space
under the condition of  Yukawa coupling unification using 2-loop MSSM
RGEs including full 1-loop threshold effects. The Yukawa-unified solutions
break down into two classes. Solutions with low tan\beta ~3-11 are
characterized by gluino mass ~1-4 TeV and squark mass ~1-5 TeV. Many of these
solutions would be beyond LHC reach, although they contain a light Higgs scalar
with mass <123 GeV and so may be excluded should the LHC Higgs hint persist.
The second class of solutions occurs at large tan\beta ~35-60, and are a subset
of  unified solutions. Constraining only  unification to ~5%
favors a rather light gluino with mass ~0.5-2 TeV, which should ultimately be
accessible to LHC searches. While our  unified solutions can be
consistent with a picture of neutralino-only cold dark matter, invoking
additional moduli or Peccei-Quinn superfields can allow for all of our
Yukawa-unified solutions to be consistent with the measured dark matter
abundance.Comment: 19 pages, 5 figures, 1 table, PDFLate
Study of B -> \rho \pi decays at Belle
This paper describes a study of B meson decays to the pseudoscalar-vector
final state \rho\pi using 31.9\times 10^6 B\bar{B} events collected with the
Belle detector at KEKB. The branching fractions B(B^+ \to \rho^0\pi^+) =
(8.0^{+2.3+0.7}_{-2.0-0.7}) \times 10^{-6} and B(B^0 -> \rho^{+-} \pi^{-+}) =
(20.8^{+6.0+2.8}_{-6.3-3.1}) \times 10^{-6} are obtained. In addition, a 90%
confidence level upper limit of B(B^0 \to \rho^0\pi^0) < 5.3 \times 10^{-6}is
reported.Comment: 14 pages, 3 figures, to be submitted to Phys. Lett. 
Hidden SUSY at the LHC: the light higgsino-world scenario and the role of a lepton collider
While the SUSY flavor, CP and gravitino problems seem to favor a very heavy
spectrum of matter scalars, fine-tuning in the electroweak sector prefers low
values of superpotential mass \mu. In the limit of low \mu, the two lightest
neutralinos and light chargino are higgsino-like. The light charginos and
neutralinos may have large production cross sections at LHC, but since they are
nearly mass degenerate, there is only small energy release in three-body
sparticle decays. Possible dilepton and trilepton signatures are difficult to
observe after mild cuts due to the very soft p_T spectrum of the final state
isolated leptons. Thus, the higgsino-world scenario can easily elude standard
SUSY searches at the LHC. It should motivate experimental searches to focus on
dimuon and trimuon production at the very lowest p_T(\mu) values possible. If
the neutralino relic abundance is enhanced via non-standard cosmological dark
matter production, then there exist excellent prospects for direct or indirect
detection of higgsino-like WIMPs. While the higgsino-world scenario may easily
hide from LHC SUSY searches, a linear e^+e^- collider or a muon collider
operating in the \sqrt{s}\sim 0.5-1 TeV range would be able to easily access
the chargino and neutralino pair production reactions.Comment: 20 pages including 12 .eps figure
- …
