895 research outputs found

    “Money worlds” and Well-Being: An Empirical Test of Tatzel’s Model of Consumer Styles Based on Money Dispositions and Materialism with Extension to other Consumer Behavior Variables

    Get PDF
    Miriam Tatzel (2002) has proposed a comprehensive theory of “money worlds and well-being” comprised of four prototypes of consumer behaviors based on whether consumers are high or low on materialism and simultaneously tight or loose with money. These four prototypes (Value Seekers, Non-Spenders, Big Spenders, and Experiencers) are proposed to differ strikingly along a variety of values, attitudes, and behaviors. Three earlier studies have reported tests or the model, but none specifically tried to confirm empirically the four types of consumers. The present study uses data from 1016 U.S. student consumers to test empirically the proposed typology and the proposed differences across the prototypes. A cluster analysis confirmed that a four-cluster solution best represented the data, confirming Tatzel’s fundamental proposal. Subsequent ANOVAs showed that two of the four groups differed predictably in the hypothesized directions. Significant differences between Big Spenders and Non-spenders were found in levels of price sensitivity, status consumption, generosity, brand engagement, worry about debt, and spending. The other two groups, Value Seekers and Experiencers, fell between them. These findings provide partial confirmation for Tatzel’s theory and suggest several applications for decision makers

    Analysis of the DNA methylation pattern of the promoter region of calcitonin gene-related peptide 1 gene in patients with episodic migraine: An exploratory case-control study

    Get PDF
    Recent studies suggested that epigenetic mechanisms, including DNA methylation, may be involved in migraine pathogenesis. The calcitonin gene-related peptide (CGRP), encoded by calcitonin gene-related peptide 1 (CALCA) gene, plays a key role in the disease. The aim of the study was to evaluate DNA methylation of CALCA gene in patients with episodic migraine. 22 patients with episodic migraine (F/M 15/7, mean age 39.7 ± 13.4 years) and 20 controls (F/M 12/8, mean age 40.5 ± 14.8 years) were recruited. Genomic DNA was extracted from peripheral blood. Cytosine-to-thymine conversion was obtained with sodium bisulfite. The methylation pattern of two CpG islands in the promoter region of CALCA gene was analyzed. No difference of methylation of the 30 CpG sites at the distal region of CALCA promoter was observed between migraineurs and controls. Interestingly, in patients with episodic migraine the methylation level was lower in 2 CpG sites at the proximal promoter region (CpG −1461, p = 0.037, and −1415, p = 0.035, respectively). Furthermore, DNA methylation level at different CpG sites correlates with several clinical characteristics of the disease, as age at onset, presence of nausea/vomiting, depression and anxiety (p < 0.05). In conclusion, we found that DNA methylation profile in two CpG sites at the proximal promoter region of CALCA is lower in migraineurs when compared to controls. Intriguingly, the −1415 hypomethylated unit is located at the CREB binding site, a nuclear transcription factor. In addition, we found a correlation between the level of CALCA methylation and several clinical features of migraine. Further studies with larger sample size are needed to confirm these results

    A new case of 13q12.2q13.1 microdeletion syndrome contributes to phenotype delineation.

    Get PDF
    A recently described genetic disorder has been associated with 13q12.3 microdeletion spanning three genes, namely, KATNAL1, LINC00426, and HMGB1. Here, we report a new case with similar clinical features that we have followed from birth to 5 years old. The child carried a complex rearrangement with a double translocation: 46,XX,t(7;13)(p15;q14),t(11;15)(q23;q22). Array-CGH identified a de novo microdeletion at 13q12.2q13.1 spanning 3–3.4 Mb and overlapping 13q12.3 critical region. Clinical features resembling those reported in the literature confirm the existence of a distinct 13q12.3 microdeletion syndrome and provide further evidence that is useful to characterize its phenotypic expression during the 5 years of development

    Targeting microRNAs as a Therapeutic Strategy to Reduce Oxidative Stress in Diabetes

    Get PDF
    Diabetes mellitus is a group of heterogeneous metabolic disorders characterized by chronic hyperglycaemia as a consequence of pancreatic ÎČ cell loss and/or dysfunction, also caused by oxidative stress. The molecular mechanisms involved inÎČ cell dysfunction and in response to oxidative stress are also regulated by microRNAs (miRNAs). miRNAs are a class of negative gene regulators, which modulate pathologic mechanisms occurring in diabetes and its complications. Although several pharmacological therapies specifically targeting miRNAs have already been developed and brought to the clinic, most previous miRNA-based drug delivery methods were unable to target a specific miRNA in a single cell type or tissue, leading to important off-target effects. In order to overcome these issues, aptamers and nanoparticles have been described as non-cytotoxic vehicles for miRNA-based drug delivery. These approaches could represent an innovative way to specifically target and modulate miRNAs involved in oxidative stress in diabetes and its complications. Therefore, the aims of this review are: (i) to report the role of miRNAs involved in oxidative stress in diabetes as promising therapeutic targets; (ii) to shed light onto the new delivery strategies developed to modulate the expression of miRNAs in diseases

    Blocking Effects of Human Tau on Squid Giant Synapse Transmission and Its Prevention by T-817 MA

    Get PDF
    Filamentous tau inclusions are hallmarks of Alzheimer’s disease and related neurodegenerative tauopathies, but the molecular mechanisms involved in tau-mediated changes in neuronal function and their possible effects on synaptic transmission are unknown. We have evaluated the effects of human tau protein injected directly into the presynaptic terminal axon of the squid giant synapse, which affords functional, structural, and biochemical analysis of its action on the synaptic release process. Indeed, we have found that at physiological concentration recombinant human tau (h-tau42) becomes phosphorylated, produces a rapid synaptic transmission block, and induces the formation of clusters of aggregated synaptic vesicles in the vicinity of the active zone. Presynaptic voltage clamp recordings demonstrate that h-tau42 does not modify the presynaptic calcium current amplitude or kinetics. Analysis of synaptic noise at the post-synaptic axon following presynaptic h-tau42 microinjection revealed an initial phase of increase spontaneous transmitter release followed by a marked reduction in noise. Finally, systemic administration of T-817MA, a proposed neuro-protective agent, rescued tau-induced synaptic abnormalities. Our results show novel mechanisms of h-tau42 mediated synaptic transmission failure and identify a potential therapeutic agent to treat tau-related neurotoxicityGrant sponsors: NIH AG027476 to Herman Moreno; NS13742/ NS/NINDS/NIH HHS to RLl; FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo, Brasil) projects 2009/01571-6 and CinAPSe 05/56447-7 to Jorge E. Moreira.Peer Reviewe

    New insights into potocki-shaffer syndrome: Report of two novel cases and literature review

    Get PDF
    Potocki-Shaffer syndrome (PSS) is a rare non-recurrent contiguous gene deletion syndrome involving chromosome 11p11.2. Current literature implies a minimal region with haploinsufficiency of three genes, ALX4 (parietal foramina), EXT2 (multiple exostoses), and PHF21A (craniofacial anomalies, and intellectual disability). The rest of the PSS phenotype is still not associated with a specific gene. We report a systematic review of the literature and included two novel cases. Because deletions are highly variable in size, we defined three groups of patients considering the PSS-genes involved. We found 23 full PSS cases (ALX4, EXT2, and PHF21A), 14 cases with EXT2-ALX4, and three with PHF21A only. Among the latter, we describe a novel male child showing developmental delay, caf&eacute;-au-lait spots, liner postnatal overgrowth and West-like epileptic encephalopathy. We suggest PSS cases may have epileptic spasms early in life, and PHF21A is likely to be the causative gene. Given their subtle presentation these may be overlooked and if left untreated could lead to a severe type or deterioration in the developmental plateau. If our hypothesis is correct, a timely therapy may ameliorate PSS phenotype and improve patients&rsquo; outcomes. Our analysis also shows PHF21A is a candidate for the overgrowth phenotype

    Blocking Effects of Human Tau on Squid Giant Synapse Transmission and Its Prevention by T-817 MA

    Get PDF
    Filamentous tau inclusions are hallmarks of Alzheimer's disease and related neurodegenerative tauopathies, but the molecular mechanisms involved in tau-mediated changes in neuronal function and their possible effects on synaptic transmission are unknown. We have evaluated the effects of human tau protein injected directly into the presynaptic terminal axon of the squid giant synapse, which affords functional, structural, and biochemical analysis of its action on the synaptic release process. Indeed, we have found that at physiological concentration recombinant human tau (h-tau42) becomes phosphorylated, produces a rapid synaptic transmission block, and induces the formation of clusters of aggregated synaptic vesicles in the vicinity of the active zone. Presynaptic voltage clamp recordings demonstrate that h-tau42 does not modify the presynaptic calcium current amplitude or kinetics. Analysis of synaptic noise at the post-synaptic axon following presynaptic h-tau42 microinjection revealed an initial phase of increase spontaneous transmitter release followed by a marked reduction in noise. Finally, systemic administration of T-817MA, a proposed neuro-protective agent, rescued tau-induced synaptic abnormalities. Our results show novel mechanisms of h-tau42 mediated synaptic transmission failure and identify a potential therapeutic agent to treat tau-related neurotoxicity
    • 

    corecore