42 research outputs found

    Gender Differences in Current Received during Transcranial Electrical Stimulation.

    Get PDF
    Low current transcranial electrical stimulation (tCS) is an effective but somewhat inconsistent tool for augmenting neuromodulation. In this study, we used 3D MRI guided electrical transcranial stimulation modeling to estimate the range of current intensities received at cortical brain tissues. Combined T1, T2, and proton density MRIs from 24 adult subjects (12 male and 12 female) were modeled with virtual electrodes placed at F3, F4, C3, and C4. Two sizes of electrodes 20 mm round and 50 mm × 45 mm were examined at 0.5, 1, and 2 mA input currents. The intensity of current received was sampled in a 1-cm sphere placed at the cortex directly under each scalp electrode. There was a 10-fold difference in the amount of current received by individuals. A large gender difference was observed with female subjects receiving significantly less current at targeted parietal cortex than male subjects when stimulated at identical current levels (P < 0.05). Larger electrodes delivered somewhat larger amounts of current than the smaller ones (P < 0.01). Electrodes in the frontal regions delivered less current than those in the parietal region (P < 0.05). There were large individual differences in current levels that the subjects received. Analysis of the cranial bone showed that the gender difference and the frontal parietal differences are due to differences in cranial bone. Males have more cancelous parietal bone and females more dense parietal bone (P < 0.01). These differences should be considered when planning tCS studies and call into question earlier reports of gender differences due to hormonal influences

    Fluid percussion injury device for the precise control of injury parameters

    Full text link
    BackgroundInjury to the brain can occur from a variety of physical insults and the degree of disability can greatly vary from person to person. It is likely that injury outcome is related to the biomechanical parameters of the traumatic event such as magnitude, direction and speed of the forces acting on the head.New methodTo model variations in the biomechanical injury parameters, a voice coil driven fluid percussion injury (FPI) system was designed and built to generate fluid percussion waveforms with adjustable rise times, peak pressures, and durations. Using this system, pathophysiological outcomes in the rat were investigated and compared to animals injured with the same biomechanical parameters using the pendulum based FPI system.Results in comparison with existing methodsImmediate post-injury behavior shows similar rates of seizures and mortality in adolescent rats and similar righting times, toe pinch responses and mortality rates in adult rats. Interestingly, post injury mortality in adult rats was sensitive to changes in injury rate. Fluoro-Jade labeling of degenerating neurons in the hilus and CA2-3 hippocampus were consistent between injuries produced with the voice coil and pendulum operated systems. Granule cell population spike amplitude to afferent activation, a measure of dentate network excitability, also showed consistent enhancement 1 week after injury using either system.ConclusionsOverall our results suggest that this new FPI device produces injury outcomes consistent with the commonly used pendulum FPI system and has the added capability to investigate pathophysiology associated with varying rates and durations of injury

    Historical Review of the Fluid-Percussion TBI Model.

    Get PDF
    Traumatic brain injury (TBI) is a major health concern worldwide. Laboratory studies utilizing animal models of TBI are essential for addressing pathological mechanisms of brain injury and development of innovative treatments. Over the past 75 years, pioneering head injury researchers have devised and tested a number of fluid percussive methods to reproduce the concussive clinical syndrome in animals. The fluid-percussion brain injury technique has evolved from early investigations that applied a generalized loading of the brain to more recent computer-controlled systems. Of the many preclinical TBI models, the fluid-percussion technique is one of the most extensively characterized and widely used models. Some of the most important advances involved the development of the Stalhammer device to produce concussion in cats and the later characterization of this device for application in rodents. The goal of this historical review is to provide readers with an appreciation for the time and effort expended by the pioneering researchers who have led to today's state of the art fluid-percussion animal models of TBI

    Electrical Guidance of Human Stem Cells in the Rat Brain.

    No full text
    Limited migration of neural stem cells in adult brain is a roadblock for the use of stem cell therapies to treat brain diseases and injuries. Here, we report a strategy that mobilizes and guides migration of stem cells in the brain in vivo. We developed a safe stimulation paradigm to deliver directional currents in the brain. Tracking cells expressing GFP demonstrated electrical mobilization and guidance of migration of human neural stem cells, even against co-existing intrinsic cues in the rostral migration stream. Transplanted cells were observed at 3 weeks and 4 months after stimulation in areas guided by the stimulation currents, and with indications of differentiation. Electrical stimulation thus may provide a potential approach to facilitate brain stem cell therapies
    corecore