5 research outputs found

    Diverse aging rates in ectothermic tetrapods provide insights for the evolution of aging and longevity

    Get PDF
    Comparative studies of mortality in the wild are necessary to understand the evolution of aging; yet, ectothermic tetrapods are underrepresented in this comparative landscape, despite their suitability for testing evolutionary hypotheses. We present a study of aging rates and longevity across wild tetrapod ectotherms, using data from 107 populations (77 species) of nonavian reptiles and amphibians. We test hypotheses of how thermoregulatory mode, environmental temperature, protective phenotypes, and pace of life history contribute to demographic aging. Controlling for phylogeny and body size, ectotherms display a higher diversity of aging rates compared with endotherms and include phylogenetically widespread evidence of negligible aging. Protective phenotypes and life-history strategies further explain macroevolutionary patterns of aging. Analyzing ectothermic tetrapods in a comparative context enhances our understanding of the evolution of aging.Animal science

    Adsorption of Pu(IV) Polymer onto 304L Stainless Steel

    No full text
    'The report, Technical Basis for Safe Operations with Pu-239 Polymer in NMS S Operating Facilities (F H Areas), (WSRC-TR-99-00008) was issued in an effort to upgrade the Authorization Basis (AB) for H Area facilities relative to nuclear criticality. At the time, insufficient data were found in the literature to quantify the adsorption of Pu polymer onto the surfaces of stainless steel tanks. Additional experimental or literature information on the adsorption of Pu(IV) polymer and its removal was deemed necessary to support the H Area AB. The results obtained are also applicable to processing in F Area facilities.Additional literature sources suggest that adsorption on the tank walls should not be a safety concern. The sources show that the amount of Pu polymer that adsorbs from a solution comes to a limiting amount in 5 to 7 days after which no additional Pu is adsorbed. Adsorption increases with Pu concentration and decreases with acid concentration. The adsorbed amounts are small varying from 0.5 mg/cm2 for a 0.5 g/l Pu / 0.5M HNO3 solution to 11 mg/cm2 for a 1-3 g/l Pu / 0.1M HNO3 solution. Additionally, acid concentrations greater than 0.1M will remove a percentage of adsorbed Pu.The experimental results have generally confirmed much of what has been reported in the literature. Specifically, adsorption onto stainless steel was found to increase with increased Pu concentration, and decreased acid concentration. The amount adsorbed was found to come to a limiting amount after 5 to 7 days. Pu adsorbed as polymer was found to be harder to remove than if it was adsorbed as Pu(IV). The amount of Pu adsorbed as polymer was found to be almost an order of magnitude more than that from a similar concentration Pu(IV) solution. Unlike the literature, only a slight increase in adsorption values was found when the steel surface was removed, dried, and replaced in the Pu solution. The amount of Pu as polymer which would adsorb onto the surface of a 14,000L tank was estimated to be less than 10 grams and thus was not a safety concern.

    ESARDA Bulletin n. 59

    No full text
    ESARDA is an association initially formed to advance and harmonize research and development for nuclear safeguards whose scope has in recent year expanded as the number and type of its working groups’ activities below indicates. Esarda is currently composed of about 30 laboratories, private and governmental institutions worldwide. Within Esarda (http://esarda.jrc.ec.europa.eu/), a number working groups have been over the years established and active namely: Techniques and Standards for Destructive Analysis, Techniques and Standards for Non-Destructive Analysis, Containment and Surveillance, Novel Approaches / Novel Technologies, Implementation of Safeguards, Verification Technologies and Methodologies, Training and Knowledge Management, Editorial Committee. ESARDA publishes a Bulletin containing peer reviewed scientific related to nuclear Safeguards, verification and non-proliferation. This publication appears generally twice a year. In addition, thematic special issues are published as proposed by the ESARDA community. The Bulletin Editorial Board is composed of about 10 experts in the various technical and scientific fields related to safeguards. They are all actively engaged in safeguards R&D or in safeguards implementation and other fields. The Editorial Board decides the contents of the Bulletin, selects the papers to be published and reviews them before publication. All ESARDA editorial activities are carried out at JRC in Ispra. Scientific papers submitted for publication are reviewed by independent authors and by members of the Editorial Committee. The Bulletin is currently submitted to Scopus for evaluation in view of citation. ESARDA Bulletin is published jointly by ESARDA and the Joint Research Centre of the European Commission and distributed free of charge to over 1000 registered members, libraries and institutions worldwide.JRC.G.II.7-Nuclear securit
    corecore