141 research outputs found

    Proving termination and memory safety for programs with Pointer Arithmetic

    Get PDF
    Proving termination automatically for programs with explicit pointer arithmetic is still an open problem. To close this gap, we introduce a novel abstract domain that can track allocated memory in detail. We use it to automatically construct a symbolic execution graph that represents all possible runs of the program and that can be used to prove memory safety. This graph is then transformed into an integer transition system, whose termination can be proved by standard techniques. We implemented this approach in the automated termination prover AProVE and demonstrate its capability of analyzing C programs with pointer arithmetic that existing tools cannot handle

    Inferring Lower Runtime Bounds for Integer Programs

    Get PDF
    We present a technique to infer lower bounds on the worst-case runtime complexity of integer programs, where in contrast to earlier work, our approach is not restricted to tail-recursion. Our technique constructs symbolic representations of program executions using a framework for iterative, under-approximating program simplification. The core of this simplification is a method for (under-approximating) program acceleration based on recurrence solving and a variation of ranking functions. Afterwards, we deduce asymptotic lower bounds from the resulting simplified programs using a special-purpose calculus and an SMT encoding. We implemented our technique in our tool LoAT and show that it infers non-trivial lower bounds for a large class of examples

    Analyzing runtime and size complexity of integer programs

    Get PDF
    We present a modular approach to automatic complexity analysis of integer programs. Based on a novel alternation between finding symbolic time bounds for program parts and using these to infer bounds on the absolute values of program variables, we can restrict each analysis step to a small part of the program while maintaining a high level of precision. The bounds computed by our method are polynomial or exponential expressions that depend on the absolute values of input parameters. We show how to extend our approach to arbitrary cost measures, allowing to use our technique to find upper bounds for other expended resources, such as network requests or memory consumption. Our contributions are implemented in the open source tool KoAT, and extensive experiments show the performance and power of our implementation in comparison with other tools

    Termination of Triangular Integer Loops is Decidable

    Get PDF
    We consider the problem whether termination of affine integer loops is decidable. Since Tiwari conjectured decidability in 2004, only special cases have been solved. We complement this work by proving decidability for the case that the update matrix is triangular.Comment: Full version (with proofs) of a paper published in the Proceedings of the 31st International Conference on Computer Aided Verification (CAV '19), New York, NY, USA, Lecture Notes in Computer Science, Springer-Verlag, 201

    On Multiphase-Linear Ranking Functions

    Full text link
    Multiphase ranking functions (MΊRFs\mathit{M{\Phi}RFs}) were proposed as a means to prove the termination of a loop in which the computation progresses through a number of "phases", and the progress of each phase is described by a different linear ranking function. Our work provides new insights regarding such functions for loops described by a conjunction of linear constraints (single-path loops). We provide a complete polynomial-time solution to the problem of existence and of synthesis of MΊRF\mathit{M{\Phi}RF} of bounded depth (number of phases), when variables range over rational or real numbers; a complete solution for the (harder) case that variables are integer, with a matching lower-bound proof, showing that the problem is coNP-complete; and a new theorem which bounds the number of iterations for loops with MΊRFs\mathit{M{\Phi}RFs}. Surprisingly, the bound is linear, even when the variables involved change in non-linear way. We also consider a type of lexicographic ranking functions, LLRFs\mathit{LLRFs}, more expressive than types of lexicographic functions for which complete solutions have been given so far. We prove that for the above type of loops, lexicographic functions can be reduced to MΊRFs\mathit{M{\Phi}RFs}, and thus the questions of complexity of detection and synthesis, and of resulting iteration bounds, are also answered for this class.Comment: typos correcte

    U-model based adaptive internal model control for tracking of nonlinear dynamic plants

    Get PDF
    We present a technique to infer lower bounds on the worst-case runtime complexity of integer programs, where in contrast to earlier work, our approach is not restricted to tail-recursion. Our technique constructs symbolic representations of program executions using a framework for iterative, under-approximating program simplification. The core of this simplification is a method for (under-approximating) program acceleration based on recurrence solving and a variation of ranking functions. Afterwards, we deduce asymptotic lower bounds from the resulting simplified programs using a special-purpose calculus and an SMT encoding. We implemented our technique in our tool LoAT and show that it infers non-trivial lower bounds for a large class of examples

    Cyclic abduction of inductively defined safety and termination preconditions

    Get PDF
    We introduce cyclic abduction: a new method for automatically inferring safety and termination preconditions of heap manipulating while programs, expressed as inductive definitions in separation logic. Cyclic abduction essentially works by searching for a cyclic proof of the desired property, abducing definitional clauses of the precondition as necessary in order to advance the proof search process. We provide an implementation, Caber, of our cyclic abduction method, based on a suite of heuristically guided tactics. It is often able to automatically infer preconditions describing lists, trees, cyclic and composite structures which, in other tools, previously had to be supplied by hand

    Alternating runtime and size complexity analysis of integer programs

    Get PDF
    We present a modular approach to automatic complexity analysis. Based on a novel alternation between finding symbolic time bounds for program parts and using these to infer size bounds on program variables, we can restrict each analysis step to a small part of the program while maintaining a high level of precision. Extensive experiments with the implementation of our method demonstrate its performance and power in comparison with other tools

    Proving termination of programs automatically with AProVE

    Get PDF
    AProVE is a system for automatic termination and complexity proofs of Java, C, Haskell, Prolog, and term rewrite systems (TRSs). To analyze programs in high-level languages, AProVE automatically converts them to TRSs. Then, a wide range of techniques is employed to prove termination and to infer complexity bounds for the resulting TRSs. The generated proofs can be exported to check their correctness using automatic certifiers. For use in software construction, we present an AProVE plug-in for the popular Eclipse software development environment

    Complexity of Bradley-Manna-Sipma Lexicographic Ranking Functions

    Get PDF
    In this paper we turn the spotlight on a class of lexicographic ranking functions introduced by Bradley, Manna and Sipma in a seminal CAV 2005 paper, and establish for the first time the complexity of some problems involving the inference of such functions for linear-constraint loops (without precondition). We show that finding such a function, if one exists, can be done in polynomial time in a way which is sound and complete when the variables range over the rationals (or reals). We show that when variables range over the integers, the problem is harder -- deciding the existence of a ranking function is coNP-complete. Next, we study the problem of minimizing the number of components in the ranking function (a.k.a. the dimension). This number is interesting in contexts like computing iteration bounds and loop parallelization. Surprisingly, and unlike the situation for some other classes of lexicographic ranking functions, we find that even deciding whether a two-component ranking function exists is harder than the unrestricted problem: NP-complete over the rationals and ÎŁ2P\Sigma^P_2-complete over the integers.Comment: Technical report for a corresponding CAV'15 pape
    • 

    corecore