44 research outputs found

    KCNK5 channels mostly expressed in cochlear outer sulcus cells are indispensable for hearing

    No full text
    International audienceIn the cochlea, K þ is essential for mechano-electrical transduction. Here, we explore cochlear structure and function in mice lacking K þ channels of the two-pore domain family. A profound deafness associated with a decrease in endocochlear potential is found in adult Kcnk5 À / À mice. Hearing occurs around postnatal day 19 (P19), and completely disappears 2 days later. At P19, Kcnk5 À / À mice have a normal endolymphatic [K þ ] but a partly lowered endocochlear potential. Using Lac-Z as a gene reporter, KCNK5 is mainly found in outer sulcus Claudius', Boettcher's and root cells. Low levels of expression are also seen in the spiral ganglion, Reissner's membrane and stria vascularis. Essential channels (KCNJ10 and KCNQ1) contributing to K þ secretion in stria vascularis have normal expression in Kcnk5 À / À mice. Thus, KCNK5 channels are indispensable for the maintenance of hearing. Among several plausible mechanisms, we emphasize their role in K þ recycling along the outer sulcus lateral route

    Activity-Dependent Changes in Extracellular Ca2+ and K+ Reveal Pacemakers in the Spinal Locomotor-Related Network

    Get PDF
    SummaryChanges in the extracellular ionic concentrations occur as a natural consequence of firing activity in large populations of neurons. The extent to which these changes alter the properties of individual neurons and the operation of neuronal networks remains unknown. Here, we show that the locomotor-like activity in the isolated neonatal rodent spinal cord reduces the extracellular calcium ([Ca2+]o) to 0.9 mM and increases the extracellular potassium ([K+]o) to 6 mM. Such changes in [Ca2+]o and [K+]o trigger pacemaker activities in interneurons considered to be part of the locomotor network. Experimental data and a modeling study show that the emergence of pacemaker properties critically involves a [Ca2+]o-dependent activation of the persistent sodium current (INaP). These results support a concept for locomotor rhythm generation in which INaP-dependent pacemaker properties in spinal interneurons are switched on and tuned by activity-dependent changes in [Ca2+]o and [K+]o

    Perinatal Development of the Motor Systems Involved in Postural Control

    Get PDF
    Motor behaviors of some species, such as the rat and the human baby, are quite immature at birth. Here we review recent data on some of the mechanisms underlying the postnatal maturation of posture in the rat, in particular the development of pathways descending from the brain stem and projecting onto the lumbar enlargement of the spinal cord. A short-lasting depletion in serotonin affects both posture and the excitability of motoneurons. Here we try to extrapolate to human development and suggest that the abnormalities in motor control observed in childhood—e.g, deficits in motor coordination—might have their roots in the prenatal period, in particular serotonin depletion due to exposure to several environmental and toxicological factors during pregnancy

    New channel lineup in spinal circuits governing locomotion

    No full text
    International audienceThe locomotor network is a neural circuit capable of generating quite varied and complex patterns of motor activity. While neurotransmission and neuromodulation play a major role in fine-tuning motor function, neuron's firing properties driven by a palette of intrinsic ionic conductances and pump currents, play an equally important role. This review highlights the papers published over the past few years studying ionic conductances in spinal circuits governing locomotion. I discuss how this ensemble of currents underpins the operation of the locomotor network and summarize progress towards identifying the channels that mediate the ionic conductances

    Une nouvelle cible thérapeutique dans le traitement de la spasticité après une lésion de la moelle épinière : la calpaïne

    No full text
    International audienceAfter a spinal cord injury (SCI), patients develop spasticity, a motor disorder characterized by hyperreflexia and stiffness of muscles. Spasticity results from alterations in motoneurons with an upregulation of their persistent sodium current (INaP), simultaneously with a disinhibition caused by a reduction of expression of chloride (Cl-) co-transporters KCC2. Until recently the origin of alterations was unknown. After reviewing pathophysiology of spasticity, the manuscript relates our recent work showing a tight relationship between the calpain-dependent proteolysis of voltage-gated sodium channels, the upregulation of INaP and spasticity following SCI. We also discuss KCC2 as a substrate of calpains which may contribute to the disinhibition of motoneurons below the lesion. This led us to consider the proteolytic cleavage of both sodium channels and KCC2 as the upstream mechanism contributing to the development of spasticity after SCI.Suite à un traumatisme de la moelle épinière, la plupart des patients développent une exagération du tonus musculaire appelée spasticité, qui aboutit souvent à une incapacité motrice. Dans cette revue, nous résumerons les principaux mécanismes physiopathologiques de la spasticité qui découlent d’une lésion médullaire puis décrirons l’apport de nos récents travaux identifiant une protéase, la calpaïne, comme le promoteur de ces mécanismes physiopathologiques. Cette découverte ouvre de nouvelles pistes thérapeutiques dans le traitement de la spasticité.Suite à un traumatisme de la moelle épinière, la plupart des patients développent une exagération du tonus musculaire appelée spasticité, qui aboutit souvent à une incapacité motrice. Dans cette revue, nous résumerons les principaux mécanismes physiopathologiques de la spasticité qui découlent d’une lésion médullaire puis décrirons l’apport de nos récents travaux identifiant une protéase, la calpaïne, comme le promoteur de ces mécanismes physiopathologiques. Cette découverte ouvre de nouvelles pistes thérapeutiques dans le traitement de la spasticité

    Le courant sodique persistant dans le réseau locomoteur du rat nouveau-né (sa contribution dans l'émergence des activités pacemakers et du rythme locomoteur)

    No full text
    La locomotion se définit par des mouvements répétés et coordonnés des membres droits et gauches et des muscles antagonistes d une même articulation. L activité locomotrice des rongeurs est générée par des groupes de neurones localisés dans la partie antérieure de l élargissement lombaire; ce réseau de cellules est appelé Central Pattern Generator (CPG). Au cours de cette thèse, les études entreprises chez le rat nouveau-né ont eu pour but d étudier les mécanismes cellulaires impliqués dans la genèse du rythme locomoteur. Le courant sodique persistant (INaP) joue un rôle important dans la genèse d activités rythmiques de plusieurs structures supraspinales et notamment celles impliquées dans la mastication et la respiration. Curieusement, son existence et son implication dans la genèse d activités rythmiques dans les structures du CPG locomoteur spinal n ont jamais été abordées. A l aide d études électrophysiologiques, la thèse démontre l existence de INaP et le caractérise pour la première fois au sein du CPG locomoteur. Ce courant est indispensable à la genèse du rythme locomoteur et joue un rôle fondamental dans l émergence d activités pacemakers au sein du CPG. Ces activités pacemakers émergent dans un contexte physiologique où des fluctuations dans la composition ionique du milieu extracellulaire interviennent au cours d une activité locomotrice. L ensemble de ces données suggère que le cœur du générateur de rythme pourrait être composé d interneurones présentant une activité pacemaker dépendante de INaP dont la modulation pourrait être un élément fondamental à la fois dans le déclenchement et la modulation de l activité locomotrice.Identification of the cellular mechanisms underlying the generation of the locomotor rhythm is of longstanding interest to physiologists. Hindlimb locomotor movements are generated by lumbar neuronal networks, referred to as central pattern generators (CPG). Although rhythm generation mechanisms within the CNS can vary, the activation of a subthreshold depolarizing conductance is always needed to start the firing of individual neurons. Among various subthreshold membrane conductances, the persistent sodium current (INaP) is involved in rhythmic activity of numerous supraspinal neurons such as those involved in the generation of masticatory and respiratory rhythm. The thesis was aimed at identifying and characterizing INaP in the neonatal rodent locomotor CPG, determining its importance in shaping neuronal firing properties and its role in the operation of the locomotor circuitry. Using electrophysiological studies the thesis has characterized INaP for the first time in the locomotor CPG. This current is essential to the generation of the locomotor rhythm and plays a fundamental role in the emergence of pacemaker activity within the CPG. These pacemaker activities emerge in a physiological context in which fluctuations in the ionic composition of the extracellular environment occur during locomotion. This study provides evidence that INaP generates pacemaker activities in CPG interneurons and new insights into the operation of the locomotor network with a critical implication of INaP in stabilizing the locomotor pattern.AIX-MARSEILLE2-Bib.electronique (130559901) / SudocSudocFranceF

    Persistent Nav1.1 and Nav1.6 currents drive spinal locomotor functions through nonlinear dynamics

    No full text
    Summary: Persistent sodium current (INaP) in the spinal locomotor network promotes two distinct nonlinear firing patterns: a self-sustained spiking triggered by a brief excitation in bistable motoneurons and bursting oscillations in interneurons of the central pattern generator (CPG). Here, we identify the NaV channels responsible for INaP and their role in motor behaviors. We report the axonal Nav1.6 as the main molecular player for INaP in lumbar motoneurons. The inhibition of Nav1.6, but not of Nav1.1, in motoneurons impairs INaP, bistability, postural tone, and locomotor performance. In interneurons of the rhythmogenic CPG region, both Nav1.6 and Nav1.1 equally mediate INaP. Inhibition of both channels is required to abolish oscillatory bursting activities and the locomotor rhythm. Overall, Nav1.6 plays a significant role both in posture and locomotion by governing INaP-dependent bistability in motoneurons and working in tandem with Nav1.1 to provide INaP-dependent rhythmogenic properties of the CPG

    Primary Afferent Terminals Acting as Excitatory Interneurons Contribute to Spontaneous Motor Activities in the Immature Spinal Cord

    No full text
    International audiencePatterned, spontaneous activity plays a critical role in the development of neuronal networks. A robust spontaneous activity is observed in vitro in spinal cord preparations isolated from immature rats. The rhythmic ventral root discharges rely mainly on the depolarizing/ excitatory action of GABA and glycine early during development, whereas at later stages glutamate drive is primarily responsible for the rhythmic activity and GABA/glycine are thought to play an inhibitory role. However, rhythmic discharges mediated by the activation of GABA A receptors are recorded from dorsal roots (DRs). In the present study, we used the in vitro spinal cord preparation of neonatal rats to identify the relationship between discharges that are conducted antidromically along DRs and the spontaneous activity recorded from lumbar motoneurons. We show that discharges in DRs precede those in ventral roots and that primary afferent depolarizations (PADs) start earlier than EPSPs in motoneurons. EPSP-triggered averaging revealed that the action potentials propagate not only antidromically in the DR but also centrally and trigger EPSPs in motoneurons. Potentiating GABAergic antidromic discharges by diazepam increased the EPSPs recorded from motoneurons; conversely, blocking DR bursts markedly reduced these EPSPs. High intracellular concentrations of chloride are maintained in primary afferent terminals by the sodium-potassium-chloride cotransporter NKCC1. Blocking these cotransporters by bumetanide decreased both dorsal and ventral root discharges. We conclude that primary afferent fibers act as excitatory interneurons and that GABA, through PADs reaching firing threshold, is still playing a key role in promoting spontaneous activity in neonates

    The M-current works in tandem with the persistent sodium current to set the speed of locomotion

    No full text
    International audienceThe central pattern generator (CPG) for locomotion is a set of pacemaker neurons endowed with inherent bursting driven by the persistent sodium current (INaP). How they proceed to regulate the locomotor rhythm remained unknown. Here, in neonatal rodents, we identified a persistent potassium current critical in regulating pacemakers and locomotion speed. This current recapitulates features of the M-current (IM): a subthreshold noninactivating outward current blocked by 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone dihydrochloride (XE991) and enhanced by N-(2-chloro-5-pyrimidinyl)-3,4-difluorobenzamide (ICA73). Immunostaining and mutant mice highlight an important role of Kv7.2-containing channels in mediating IM. Pharmacological modulation of IM regulates the emergence and the frequency regime of both pacemaker and CPG activities and controls the speed of locomotion. Computational models captured these results and showed how an interplay between IM and INaP endows the locomotor CPG with rhythmogenic properties. Overall, this study provides fundamental insights into how IM and INaP work in tandem to set the speed of locomotion
    corecore