15 research outputs found

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification. Funding: UK Research and Innovation and National Institute for Health Research

    Large-scale phenotyping of patients with long COVID post-hospitalization reveals mechanistic subtypes of disease

    Get PDF
    One in ten severe acute respiratory syndrome coronavirus 2 infections result in prolonged symptoms termed long coronavirus disease (COVID), yet disease phenotypes and mechanisms are poorly understood1. Here we profiled 368 plasma proteins in 657 participants ≥3 months following hospitalization. Of these, 426 had at least one long COVID symptom and 233 had fully recovered. Elevated markers of myeloid inflammation and complement activation were associated with long COVID. IL-1R2, MATN2 and COLEC12 were associated with cardiorespiratory symptoms, fatigue and anxiety/depression; MATN2, CSF3 and C1QA were elevated in gastrointestinal symptoms and C1QA was elevated in cognitive impairment. Additional markers of alterations in nerve tissue repair (SPON-1 and NFASC) were elevated in those with cognitive impairment and SCG3, suggestive of brain–gut axis disturbance, was elevated in gastrointestinal symptoms. Severe acute respiratory syndrome coronavirus 2-specific immunoglobulin G (IgG) was persistently elevated in some individuals with long COVID, but virus was not detected in sputum. Analysis of inflammatory markers in nasal fluids showed no association with symptoms. Our study aimed to understand inflammatory processes that underlie long COVID and was not designed for biomarker discovery. Our findings suggest that specific inflammatory pathways related to tissue damage are implicated in subtypes of long COVID, which might be targeted in future therapeutic trials

    Sequence analysis of the equine SLC26A2 gene locus on chromosome 14q15 -> q21

    No full text
    The solute carrier family 26, member 2 (SLC26A2) gene belongs to a family of multifunctional anion exchangers. Mutations in the human SLC26A2 gene are associated with autosomal recessively inherited chondrodysplasias. Hence, we postulate that the equine SLC26A2 could be a candidate gene for conformational traits in horses. An equine BAC clone harboring the SLC26A2 gene was isolated. The complete 142,625 bp insert sequence of this clone was determined by transposon sequencing. Together with the SLC26A2 gene the BAC clone contains four genes, i.e. the macrophage colony stimulating factor 1 receptor precursor (CSF1R), KIAA0194 protein gene similar to the SMF protein ( KIAA0194), a tigger transposable element derived 14 (TIGD14), the 3'-5'-cyclic GMP phosphodiesterase alpha-chain (EC 3.1.4.35) and one unidentified open reading frame. The equine SLC26A2 gene encompassing 6,152 bp consists of two exons. The complete open reading frame of 2,211 bp encodes a protein of 736 amino acids. A comparison of the amino acid sequence with other mammalian orthologs revealed homologies with identity in a range between 80% and 88%. By contrast, the equine SLC26A2 protein lacks five C-terminal amino acids. Four single nucleotide polymorphisms (SNP) were identified (three synonymous and one non-synonymous variant Ser210Leu) in the coding region by comparative sequencing of 50 DNA samples representing the German Riding horse. Allele frequencies and distribution were further evaluated in a variety of different breeds: Arabians ( for all four SNPs), Old Kladrub Horses, Draught Horses ( including Westphalian Draught Horses, Rheinish Westphalian Draught Horses, Saxon-Thuringia Coldbloods, Altmarker Coldbloods), American Saddlebreds, Miniature Horses, Australian Riding Ponies, Appaloosa, Morgan Horses, and Lipizzaner for C629T (Ser210Leu) alone. No animal carrying the homozygous genotype TT has been detected. The overall frequency of the newly described variant T is low (between 2% and 6%). Simulation studies on the protein conformation predict structural protein changes mediated by the SNP. Copyright (c) c 2007 S. Karger AG, Basel
    corecore