4,550 research outputs found

    Black hole formation in bidimensional dilaton gravity coupled to scalar matter systems

    Get PDF
    This work deals with the formation of black hole in bidimensional dilaton gravity coupled to scalar matter fields. We investigate two scalar matter systems, one described by a sixth power potential and the other defined with two scalar fields containing up to the fourth power in the fields. The topological solutions that appear in these cases allow the formation of black holes in the corresponding dilaton gravity models.Comment: Latex, 9 pages. Published in Mod. Phys. Lett. A14 (1999) 268

    Influence of Lorentz- and CPT-violating terms on the Dirac equation

    Full text link
    The influence of Lorentz- and CPT-violating terms (in "vector" and "axial vector" couplings) on the Dirac equation is explicitly analyzed: plane wave solutions, dispersion relations and eigenenergies are explicitly obtained. The non-relativistic limit is worked out and the Lorentz-violating Hamiltonian identified in both cases, in full agreement with the results already established in the literature. Finally, the physical implications of this Hamiltonian on the spectrum of hydrogen are evaluated both in the absence and presence of a magnetic external field. It is observed that the fixed background, when considered in a vector coupling, yields no qualitative modification in the hydrogen spectrum, whereas it does provide an effective Zeeman-like splitting of the spectral lines whenever coupled in the axial vector form. It is also argued that the presence of an external fixed field does not imply new modifications on the spectrum.Comment: 13 pages, no figures, revtex4 styl

    Patient centred diagnosis: sharing diagnostic decisions with patients in clinical practice.

    Get PDF
    Patient centred diagnosis is best practised through shared decision making; an iterative dialogue between doctor and patient, whichrespects a patient’s needs, values, preferences, and circumstances. Shared decision making for diagnostic situations differs fundamentally from that for treatment decisions. This has important implications when considering its practical application. The nature of dialogue should be tailored to the specific diagnostic decision; scenarios with higher stakes or uncertainty usually require more detailed conversation

    Spin-polarized current and shot noise in the presence of spin flip in a quantum dot via nonequilibrium Green's functions

    Get PDF
    Using non-equilibrium Green functions we calculate the spin-polarized current and shot noise in a ferromagnet--quantum-dot--ferromagnet (FM-QD-FM) system. Both parallel (P) and antiparallel (AP) magnetic configurations are considered. Coulomb interaction and coherent spin-flip (similar to a transverse magnetic field) are taken into account within the dot. We find that the interplay between Coulomb interaction and spin accumulation in the dot can result in a bias-dependent current polarization \wp. In particular, \wp can be suppressed in the P alignment and enhanced in the AP case depending on the bias voltage. The coherent spin-flip can also result in a switch of the current polarization from the emitter to the collector lead. Interestingly, for a particular set of parameters it is possible to have a polarized current in the collector and an unpolarized current in the emitter lead. We also found a suppression of the Fano factor to values well below 0.5.Comment: Published version. 13 pages, 7 figure

    Velocity Tails for Inelastic Maxwell Models

    Full text link
    We study the velocity distribution function for inelastic Maxwell models, characterized by a Boltzmann equation with constant collision rate, independent of the energy of the colliding particles. By means of a nonlinear analysis of the Boltzmann equation, we find that the velocity distribution function decays algebraically for large velocities, with exponents that are analytically calculated.Comment: 4 pages, 2 figure

    Chemical abundances for 11 bulge stars from high-resolution, near-IR spectra

    Full text link
    It is debated whether the Milky Way bulge has the characteristics of a classical bulge sooner than those of a pseudobulge. Detailed abundance studies of bulge stars is a key to investigate the origin, history, and classification of the bulge. The aim is to add to the discussion on the origin of the bulge and to study detailed abundances determined from near-IR spectra for bulge giants already investigated with optical spectra, the latter also providing the stellar parameters which are very significant for the results of the present study. Especially, the important CNO elements are better determined in the near-IR. High-resolution, near-infrared spectra in the H band are recorded using the CRIRES spectrometer on the Very Large Telescope. The CNO abundances can all be determined from the numerous molecular lines in the wavelength range observed. Abundances of the alpha elements are also determined from the near-IR spectra. [O/Fe], [Si/Fe] and [S/Fe] are enhanced up to metallicities of at least [Fe/H]=-0.3, after which they decline. This suggests that the Milky Way bulge experienced a rapid and early star-formation history like that of a classical bulge. However, a similarity between the bulge trend and the trend of the local thick disk seems present. Such a similarity could suggest that the bulge has a pseudobulge origin. Our [C/Fe] trend does not show any increase with [Fe/H] which could have been expected if W-R stars have contributed substantially to the C abundances. No "cosmic scatter" can be traced around our observed abundance trends; the scatter found is expected, given the observational uncertainties.Comment: Accepted for publication in A&
    corecore