13 research outputs found

    New Results in the Analysis of the 16^{16}O+28^{28}Si Elastic Scattering by Modifying the Optical Potential

    Get PDF
    The elastic scattering of the 16^{16}O+28^{28}Si system has been analyzed with a modified potential within the framework of the optical model over a wide energy range in the laboratory system from 29.0 to 142.5 MeV. This system has been extensively studied over the years and a number of serious problems has remained unsolved: The explanation of the anomalous large angle scattering data; the out-of-phase problem between theoretical predictions and experimental data; the reproduction of the oscillatory structure near the Coulomb barrier; the consistent description of angular distributions together with the excitation functions data are just some of these problems. We propose the use of a modified potential method to explain these problems over this wide energy range. This new method consistently improves the agreement with the experimental data and achieves a major improvement on all the previous Optical model calculations for this system.Comment: 19 pages with 8 figure

    The linkage phase of the polymorphism KCNH2-K897T influences the electrophysiological phenotype in hiPSC models of LQT2

    Get PDF
    While rare mutations in ion channel genes are primarily responsible for inherited cardiac arrhythmias, common genetic variants are also an important contributor to the clinical heterogeneity observed among mutation carriers. The common single nucleotide polymorphism (SNP) KCNH2-K897T is associated with QT interval duration, but its influence on the disease phenotype in patients with long QT syndrome type 2 (LQT2) remains unclear. Human induced pluripotent stem cells (hiPSCs), coupled with advances in gene editing technologies, are proving an invaluable tool for modeling cardiac genetic diseases and identifying variants responsible for variability in disease expressivity. In this study, we have used isogenic hiPSC-derived cardiomyocytes (hiPSC-CMs) to establish the functional consequences of having the KCNH2-K897T SNP in cis- or trans-orientation with LQT2-causing missense variants either within the pore-loop domain (KCNH2A561T/WT) or tail region (KCNH2N996I/WT) of the potassium ion channel, human ether-a-go-go-related gene (hERG). When KCNH2-K897T was on the same allele (cis) as the primary mutation, the hERG channel in hiPSC-CMs exhibited faster activation and deactivation kinetics compared to their trans-oriented counterparts. Consistent with this, hiPSC-CMs with KCNH2-K897T in cis orientation had longer action and field potential durations. Furthermore, there was an increased occurrence of arrhythmic events upon pharmacological blocking of hERG. Collectively, these results indicate that the common polymorphism KCNH2-K897T differs in its influence on LQT2-causing KCNH2 mutations depending on whether it is present in cis or trans. This study corroborates hiPSC-CMs as a powerful platform to investigate the modifying effects of common genetic variants on inherited cardiac arrhythmias and aids in unraveling their contribution to the variable expressivity of these diseases.Stem cells & developmental biolog

    Cryopreservation of human pluripotent stem cell-derived cardiomyocytes is not detrimental to their molecular and functional properties

    Get PDF
    Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a powerful platform for in vitro modelling of cardiac diseases, safety pharmacology and drug screening. All these applications require large quantities of well-characterised and standardised batches of hiPSC-CMs. Cryopreservation of hiPSC-CMs without affecting their biochemical or biophysical phenotype is essential for facilitating this, but ideally requires the cells being unchanged by the freeze-thaw procedure. We therefore compared the in vitro functional and molecular characteristics of fresh and cryopreserved hiPSC-CMs generated from multiple independent hiPSC lines. While the frozen hiPSC-CMs exhibited poorer replating than their freshly-derived counterparts, there was no difference in the proportion of cardiomyocytes retrieved from the mixed population when this was factored in, although for several lines a higher percentage of ventricular-like hiPSC-CMs were recovered following cryopreservation. Furthermore, cryopreserved hiPSC-CMs from one line exhibited longer action potential durations. These results provide evidence that cryopreservation does not compromise the in vitro molecular, physiological and mechanical properties of hiPSC-CMs, though can lead to an enrichment in ventricular myocytes. It also validates this procedure for storing hiPSC-CMs, thereby allowing the same batch of hiPSC-CMs to be used for multiple applications and evaluations.Stem cells & developmental biolog
    corecore